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Key Ideas for this Talk

• Extensions of the Standard Model scalar sector can 
address key open questions in cosmology

• Di-Higgs searches provide one important window on 
the cosmological implications of extended scalar 
sectors

• This talk: focus on delineating the thermal history of 
EWSB and consequences for baryogenesis and 
gravitation wave searches

• There are exciting opportunities and synergies 
involving the LHC and prospective future colliders
à how might a muon collider fit into this picture?
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Outline

I. Cosmological Implications

II. Was There an EW Phase Transition?

III. Model Illustration: Real Singlet
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V. Outlook
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Di-Higgs & Triscalar Interactions

l111 Non-resonant

l211 Resonant

l122 Resonant – exotic decays & 
non-resonant

h1 SM-like
h2 SM-like

l ijk hi hj hk
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I. Cosmological Implications



The Origin of Matter

How can extended scalar sectors address this puzzle ?

Cosmic Energy Budget

Dark Matter

Dark Energy

68 %

27 %

5 %

BaryonsBaryons
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Connections with Cosmology

• Dark Matter: stable h2

• Thermal history of EWSB: Was there 
an electroweak phase transition ?



Electroweak Phase Transition

• Higgs discovery ! What was the thermal 
history of EWSB ?

• Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ?

• Gravitational waves ! If a signal observed in 
next generation probes, could a cosmological 
phase transition be responsible ?
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Thermal History of Symmetry Breaking

QCD Phase Diagram à EW Theory Analog? 



EWSB Transition: St’d Model
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Increasing mh 

SM EW: Cross over transition

How does new TeV scale 
physics change this picture ? 
What is the phase diagram ? 
EWPT ? If so, what kind ?
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Electroweak Phase Transition

• Higgs discovery ! What was the thermal 
history of EWSB ?

• Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ?

• Gravitational waves ! If a signal observed in 
next generation probes, could a cosmological 
phase transition be responsible ?
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EW Phase Transition: Baryogen & GW

12

• Baryogen*

• GW 

* Need BSM CPV
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II. Was There an EW Phase Transition ?



Thermal History of EWSB
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)

035013-4

Extrema can evolve differently as T evolves à
rich possibilities for symmetry breaking

Higgs phase

Higgs

BSM S
ca

lar

VEFF (H, F)



Thermal History of EWSB

15

1

b4

!
1

2
a2v

2
0 !m2

!

"
<

1

2
m2

Hv
2
0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.

100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

m

b 4

mH 125 GeV, a2 1.07

EW vacuum
unstable

AB

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0
m

b 4

mH 125 GeV 150 GeV,

a2

EW vacuum
unstable

A B

FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)

035013-4

Extrema can evolve differently as T evolves à
rich possibilities for symmetry breaking

Higgs phase

Higgs

BSM S
ca

lar

VEFF (H, F)

• What is the landscape 
of potentials and their 
thermal histories?

• How can we probe this 
T > 0 landscape 
experimentally ?

• How reliably can we 
compute the 
thermodynamics ?
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blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
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indicated in the left and right panels of Fig. 3, respectively.
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minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
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High-T SM Effective Potential

T0 ~  140 GeV

ACFI-T18-17

The Electroweak Phase Transition: A Collider Target
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.

I. INTRODUCTION

II. FORMULAE
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FIG. 4: Gluon luminosity ratio

ECM(TeV) M� (GeV) sin ✓ � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 100 NN 135 fb 3 NN
714 NN NN 3 NN

100 100 NN 135 fb 3 NN
714 NN NN 3 NN

14 714 0.01 135 fb 3 NN
100 714 0.01 NN 30 NN

TABLE IV: Single heavy higgs production via ggF.

VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK

VIII. FORMULAE
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
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T
12⇡

X

{b}0
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⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)

Generate finite-T barrier

Introduce new scalar f
interaction with h via 
the Higgs Portal

h
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III. Model Illustrations
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Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)



Real Singlet
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Potential & conventions

• Profumo, RM, Shaugnessy: h1 = SM-like

• Kozaczuk, RM, Shelton: h1 = lightest 



EW Phase Transition: Singlet Scalars
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How does this picture 
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a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

No Z2 breaking at T = 0 
required

Z2 breaking at T = 0 
(explicit or spontaneous)



EW Phase Transition: New Scalars
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New scalars

Simplest Extension: 
two states h1 & h2

Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010
Espinosa, Konstandin, Riva NPB 854 (2012) 592

<S>

Real Singlet: f ! S

m1 > 2 m2

m2 > 2 m1
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EW Phase Transition: Singlet Scalars
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Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee
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Profumo, MJRM, Shaugnessy ‘07

Collider probes

• Resonant di-Higgs production

• Precision Higgs measurements

• Non-resonant di-Higgs & exotic 
Higgs decays



Real Singlet: Triple Scalar Couplings
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Resonant di-Higgs

Higgs self-coupling

Exotic decays

h2 à h1 h1

h1 h1 h1

h1 à h2 h2



Real Singlet: Triple Scalar Couplings
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Resonant di-Higgs

Higgs self-coupling

Exotic decays

h2 à h1 h1

h1 h1 h1

h1 à h2 h2

Insensitive to q and x0



Real Singlet: Triple Scalar Couplings
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Resonant di-Higgs

Higgs self-coupling

h2 à h1 h1

h1 h1 h1

Same combination q suppression

Exotic decays & 
non-res di-Higgs
h1 à h2 h2



Real Singlet: Triple Scalar Couplings
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Resonant di-Higgs

Higgs self-coupling

Exotic decays & 
non-res di-Higgs

h2 à h1 h1

h1 h1 h1

h1 à h2 h2

Portal coupling sensitivity without q suppression
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IV. Di-Higgs: Opportunities

Apologies to all whose work 
I cannot cover here !



Singlets: Precision & Res Di-Higgs Prod

Kotwal, No, R-M, Winslow  1605.06123
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies  

SFOEWPT •

h-S Mixing 

m2 ⇡ MN (37)

�(N ! `H) 6= �(N ! ¯̀H⇤) (38)

Lmass = yL̄H̃NR + h.c. + mNN̄RN
C

R
(39)
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⇤
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c
HH

T
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¯̀H⇤) (41)

m⌫ =
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2
D
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(42)
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�µ � 6qqµ)�5

�
U(p) (43)

hp
0
| J

EM
µ

|pi
PV

=
FA

M2
Ū(p0)

⇥
(q2

�µ � 6qqµ)�5

⇤
U(p) (44)

Qquqd = ✏jkQ̄
j
uRQ̄

k
dR (45)

YB =
nB

s
= (8.82± 0.23)⇥ 10�11 (46)

mt̃R
⇠ 160 GeV (47)

bb̄�� & 4⌧ (48)

4

Next gen pp

LHC

EWPO

See also: Huang et al, 1701.04442; 
Li et al, 1906.05289



Singlets: Non-Resonant Di-Higgs Prod
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Phase Diagram: EFT + Lattice
e+e- à Zh

@FCC, CEPC

Higgs self-
coupling

VBF 100 TeV
pp (non-res)

Z2 Symmetric
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Phase Diagram: EFT + Lattice
Heavy Higgs 
(VV) HL-LHC 

Res Di-Higgs 
100 TeV pp

e+e- à Zh
@FCC, CEPC

No Z2 Sym



Light Singlets: Exotic Decays
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J. Kozaczuk, MR-M, J. Shelton 1911.10210
See also: Carena et al 1911.10206

h2 à h1 h1 à 4b

EWPT viable: 
numerical

EWPT viable: 
Semi analytic

Future e+e-



Singlets: Triple Self-Coupling

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order

Profumo, R-M, Wainwright, Winslow: 1407.5342; see 
also Noble & Perelstein 0711.3018

m2 > 2 m1

m1 > 2 m2

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee

Modified Higgs Self-Coupling
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<S>

Scan 
includes 
m2 > 2m1
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Muon Collider: Comments

37

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

Simple arguments: TEW + 
first order EWPT à
Mf < 700 GeV~

MJRM 1912.07189
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Muon Collider: Comments

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

Simple arguments: TEW + 
strong first order EWPT à
| sin q | > 0.01~

MJRM 1912.07189



39

V. Outlook

• Extensions of the Standard Model scalar sector can 
address key open questions in cosmology

• Di-Higgs searches provide one important window on 
the cosmological implications of extended scalar 
sectors

• This talk: focus on delineating the thermal history of 
EWSB and consequences for baryogenesis and 
gravitation wave searches

• There are exciting opportunities and synergies 
involving the LHC and prospective future colliders 
à how might a muon collider fit into this picture?
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Heavy Real Singlet:  EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604
• One-step
• Non-perturbative

3d SM-like 

EFT

Latent heat

“D
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LISA SNR

Non-dynamical heavy BSM scalars
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