

$H \rightarrow \gamma \gamma @ 3 TeV$

Discussion on the paper to be submitted CLICdp-Draft-2021-003

CLICdp AWG, 17 May 2021

Goran Kacarevic, Ivanka Bozovic Jelisavcic et al. VINCA Belgrade & Uni. Kragujevac

Status and Open issues

- PhD analyses started 2015
- Results presented:
 - CLICdp AWG: 21 Feb 2017, 22 Aug 2017, 24 Feb 2020, 27 Jan 2020
 - CLIC WS 2017, 2021
 - ALPS 2019
 - LCWS21
- Paper submitted to the Pub. Com. 25th of January 2021
- Draft number CLICdp-Draft-2021-003 assigned
- Resolved issue of systematic uncertainty estimate from the reconstruction of the luminosity spectrum

(P. Roloff commented that our estimate based of fraction of selected signal events at various center-of-mass energies is too conservative – leads to overestimate)

Are we double-counting background by including mono-photon processes (ee γ , $\nu\nu\gamma$, qq γ)?

- A bit of a history...
 - These processes were considered in the same analysis at 1.4 TeV (published in the Higgs paper)
 - WHIZARD V1.95 used in both analyses
 - ...under similar user's requirements

1.4 TeV

samples

	Process	σ [fb] ¹	Events in $1.5\rm ab^{-1}$	Events Available ²	Event Weights
<	$e^+e^- \rightarrow v \overline{v} \gamma$	30	44000	50000	0.9
	$e^+e^- \rightarrow v \overline{v} \gamma \gamma$	17	26000	22000	1.2
	$e^+e^- \rightarrow \gamma\gamma$	27	41000	32000	1.3
<	$e^+e^- \rightarrow e^+e^-\gamma$	290	430000	285000	1.5
	$e^+e^- \rightarrow e^+e^-\gamma\gamma$	13	19000	5500	3.5
<	$e^+e^- \rightarrow q \overline{q} \gamma$	67	100000	92000	1.1
	$e^+e^- ightarrow q\overline{q}\gamma\gamma$	17	25000	16000	1.5

Signal process	$\sigma(fb)$	$N@5ab^{-1}$	Nsimulated
$e^+e^- ightarrow H u u, H ightarrow \gamma \gamma$	0.95	4750	24550
Background processes	$\sigma(fb)$		
$e^+e^- o \gamma\gamma$	19	$9.5 \cdot 10^5$	$3 \cdot 10^4$
$e^+e^- ightarrow e^+e^-\gamma$	797	$4.0 \cdot 10^{6}$	$3 \cdot 10^{6}$
$e^+e^- ightarrow e^+e^-\gamma\gamma$	56	$2.8 \cdot 10^{5}$	$1.5 \cdot 10^{5}$
$e^+e^- ightarrow var{v}\gamma$	47	$2.4 \cdot 10^{5}$	$2 \cdot 10^{5}$
$e^+e^- ightarrow v ar{v} \gamma \gamma$	49	$2.5 \cdot 10^{5}$	$1.6 \cdot 10^{5}$
$e^+e^- ightarrow q\bar{q}\gamma$	363	$1.9 \cdot 10^6$	$1.2 \cdot 10^{6}$
$e^+e^- o qar q \gamma\gamma$	59	$3.0 \cdot 10^{5}$	$3 \cdot 10^{5}$

Cuts on generated final states*:

- At least two photons with $E > 10\,{
 m GeV},\, p_{
 m T} > 5\,{
 m GeV}$ and $5^\circ < heta < 175^\circ$
- At least one Higgs candidate with $110\,{\rm GeV} < M(\gamma\gamma) < 140\,{\rm GeV}$
- No visible lepton or quark with $10^\circ < \theta < 170^\circ$

*Second photon comes from ISR or FSR (background)

Cuts on generated final states*:

- 1. di-photon invariant mass in the window (100-150) GeV
- 2. at least two photons in event with polar angle between 5 deg and 175 deg
- 3. $p_T > 10$ GeV of the photons
- 4. We haven't restricted q or l in the tracker can be refined

Туре	Energy	Detec	tor Pro	odID	Events planned	I Events proc	luced	σ [fb]	Comments
ee -> qqyy	3	TeV	CLIC_ILD	6966	250000	299600	72.3) whi	ZARD V57, m(h) = 12 TeV
ee -> qqγ	3	8 TeV	CLIC_ILD	6969	1000000	1198600	583.6	WHI	ZARD V57, m(h) = 12 TeV
ee -> γvv	3	8 TeV	CLIC_ILD	6981	150000	194900	16806.4	4*) WHI	ZARD V57, m(h) = 12 TeV, preselection cuts for the H->gammagamma analysis ("cuts_h_gammagamma_3000.txt")
ee -> yyee	3	TeV	CLIC_ILD	6984	120000	144900	4244.7	* WHI	ZARD V57, m(h) = 12 TeV, preselection cuts for the H->gammagamma analysis ("cuts_h_gammagamma_3000.txt")
ee -> үүvv	3	8 TeV	CLIC_ILD	7014	120000	155500	2616.6	* WHI	ZARD V57, m(h) = 12 TeV, preselection cuts for the H->gammagamma analysis ("cuts_h_gammagamma_3000.txt")
ee -> γγ	3	TeV	CLIC_ILD	7017	20000	29900	866.9*	WHI	ZARD V57, m(h) = 12 $\frac{\text{TeV}}{2}$, preselection cuts for the H->gammagamma analysis ("cuts_h_gammagamma_3000 ₃ txt")
ee -> eey	3	8 TeV	CLIC_ILD	7020	3000000	3039000	185392	2.3* WHI	ZARD V57, m(h) = 12 TeV, preselection cuts for the H->gammagamma analysis ("cuts_h_gammagamma_3000.txt")

Available samples at <u>MonteCarloSamplesForTheHiggsPaper</u>

Discussion

Are we double-counting background by including mono-photon processes (ee γ , $\nu\nu\gamma$, qq γ)?

- There are several questions that can be asked:
- 1) Are cross-sections for processes with a single photon in the final state correctly reproduced in WHIZARD V1.95?

 N_{BDT} , for integrated luminosity of 5 ab⁻¹

2) Is kinematics of the final state photon properly described?

	1 (BD1,		
Process	$\epsilon_{pre}(\%)$	$\mathcal{E}_{BDT}(\%)$	N _{BDT}
$e^+e^- \rightarrow H \nu \nu, H \rightarrow \gamma \gamma$	70	62.0	2062
$e^+e^- o \gamma\gamma^*$	0.10	13.7	624
$e^+e^- ightarrow e^+e^-\gamma st$	0.03	9.8	26598
$e^+e^- ightarrow e^+e^-\gamma\gammast$	0.05	7.4	788
$e^+e^- ightarrow u u \gamma^*$	0.09	25.0	18585
$e^+e^- ightarrow u u \gamma \gamma st$	0.04	24.5	11628
$e^+e^- ightarrow qq\gamma$	0.50	7.5	1089
$e^+e^- ightarrow qq\gamma\gamma$	1	10.1	423
	Process $e^+e^- \rightarrow H\nu\nu, H \rightarrow \gamma\gamma$ $e^+e^- \rightarrow e^+e^-\gamma^*$ $e^+e^- \rightarrow e^+e^-\gamma\gamma^*$ $e^+e^- \rightarrow \nu\nu\gamma^*$ $e^+e^- \rightarrow \nu\nu\gamma\gamma^*$ $e^+e^- \rightarrow qq\gamma$ $e^+e^- \rightarrow qq\gamma\gamma$	Process $\varepsilon_{pre}(\%)$ $e^+e^- \rightarrow H\nu\nu, H \rightarrow \gamma\gamma$ 70 $e^+e^- \rightarrow \gamma\gamma^*$ 0.10 $e^+e^- \rightarrow e^+e^-\gamma^*$ 0.03 $e^+e^- \rightarrow e^+e^-\gamma\gamma^*$ 0.05 $e^+e^- \rightarrow e^+e^-\gamma\gamma^*$ 0.09 $e^+e^- \rightarrow \nu\nu\gamma\gamma^*$ 0.04 $e^+e^- \rightarrow qq\gamma$ 0.50 $e^+e^- \rightarrow qq\gamma\gamma$ 1	Process $\varepsilon_{pre}(\%)$ $\varepsilon_{BDT}(\%)$ $e^+e^- \rightarrow H\nu\nu, H \rightarrow \gamma\gamma$ 7062.0 $e^+e^- \rightarrow \gamma\gamma^*$ 0.1013.7 $e^+e^- \rightarrow e^+e^-\gamma^*$ 0.039.8 $e^+e^- \rightarrow e^+e^-\gamma\gamma^*$ 0.057.4 $e^+e^- \rightarrow v\nu\gamma^*$ 0.0925.0 $e^+e^- \rightarrow vv\gamma^*$ 0.0424.5 $e^+e^- \rightarrow qq\gamma$ 0.507.5 $e^+e^- \rightarrow qq\gamma\gamma$ 110.1

If not, than it depends what is wrong:

NO

- a) Only cross-section \rightarrow can be cured with scaling (in MVA)
- b) Kinematics → processes in question should be reprocessed in WHIZARD (2 ?)

Without clear answers to these questions can we be convinced that it is justified to neglect mono-photon processes?

```
flag: 0x0
 simulator status bits: [sbvtcls] s: created in simulation b: backscatter v: vertex is not endpoint
   id
        ]index|
                    PDG |
                             DX.
                                    py,
                                               DZ
                                                    px_ep, py_ep, pz_ep
                                                                                 | energy |gen|[
            spin
                            colorflow | [parents] - [daughters]
[00000128]
            0
                      11| 0.00e+00, 0.00e+00, 1.50e+03| 0.00e+00, 0.00e+00, 0.00e+00| 1.50e+03| 4 |[
+00, 0.00e+00, 0.00e+00 (0, 0) [] - [2,4]
[00000129]
           1
                     -11 0.00e+00, 0.00e+00, -1.50e+03 0.00e+00, 0.00e+00, 0.00e+00 1.50e+03 4
+00, 0.00e+00, 0.00e+00| (0, 0) | [] - [3,5]
[00000130] 2]
                      11| 2.75e-05,-5.57e-05, 1.50e+03| 0.00e+00, 0.00e+00, 0.00e+00| 1.50e+03| 3 |[
+00, 0.00e+00, 0.00e+00| (0, 0) | [0] - [6,7]
[00000131] 3|
                     -11 3.94e+00, 9.62e-01,-7.72e+02 0.00e+00, 0.00e+00, 0.00e+00 7.72e+02 3 [
+00, 0.00e+00, 0.00e+00 (0, 0) [1] - [6,7]
[00000132] 4]
                     22|-2.75e-05, 5.57e-05, 2.30e-04| 0.00e+00, 0.00e+00, 0.00e+00| 2.38e-04| 1 ||
+00, 0.00e+00, 0.00e+00 (0, 0) [0] - []
[00000133] 5|
                   22 - 3.94e+00, -9.62e-01, -7.28e+02 0.00e+00, 0.00e+00, 0.00e+00 7.28e+02 1 [
+00, 0.00e+00, 0.00e+00| (0, 0) | [1] - []
[00000134] 6]
                      13 - 5.96e+02, -7.44e+02, 8.87e+02 0.00e+00, 0.00e+00, 0.00e+00 1.30e+03 1 ||
+00, 0.00e+00, 0.00e+00 (0, 0) [2,3] - []
[00000135] 7]
                     -13| 6.00e+02, 7.45e+02,-1.59e+02| 0.00e+00, 0.00e+00, 0.00e+00| 9.70e+02| 1 |[
+00, 0.00e+00, 0.00e+00 (0, 0) [2,3] - []
```

ISR

```
1 ISR + BS
     id
4 F
         lindex
                      PDG |
                              px,
                                     Py,
                                                pz
                                                      | px_ep, py_ep, pz_ep
                                                                                  | energy |gen|
             spin
                              colorflow | [parents] - [daughters]
                       11 0.000+00, 0.000+00, 1.500+03 0.000+00, 0.000+00, 0.000+00 1.500+03 4
6 [00000020]
             01
 +00, 0.00e+00, 0.00e+00| (0, 0) | [] - [2,3,4,5]
7 [00000021] 1|
                       -11 0.00e+00, 0.00e+00, -1.50e+03 0.00e+00, 0.00e+00, 0.00e+00 1.50e+03 4
 +00, 0.00e+00, 0.00e+00| (0, 0) | [] - [2,3,4,5]
8 [00000022] 2|
                       11| 6.22e-15,-7.11e-15, 1.45e+03| 0.00e+00, 0.00e+00, 0.00e+00| 1.45e+03| 3 |
 +00. 0.00e+00, 0.00e+00| (0, 0) | [0,1] - [6,7]
9 [00000023] 3|
                       -11 1.23e+01,-1.79e+01,-4.77e+02 0.00e+00, 0.00e+00, 0.00e+00 4.78e+02 3
 +00, 0.00e+00, 0.00e+00| (0, 0) | [0,1] - [6,7]
0 [00000024] 4
                     22 0.00e+00, 0.00e+00, 2.20e-26 0.00e+00, 0.00e+00, 0.00e+00 2.20e-26 1
 +00, 0.00e+00, 0.00e+00 (0, 0) [0,1] - []
                     22|-1.23e+01, 1.79e+01,-2.59e+02| 0.00e+00, 0.00e+00, 0.00e+00| 2.60e+02| 1
1 [00000025] 5]
 +00, 0.00e+00, 0.00e+00| (0, 0) | [0,1] - []
2 [00000026] 6]
                       13|-6.11e+02,-4.60e+02, 8.62e+02| 0.00e+00, 0.00e+00, 0.00e+00| 1.15e+03| 1
 +00, 0.00e+00, 0.00e+00| (0, 0) | [2,3] - []
3 [00000027] 7
                      -13 6.23e+02, 4.42e+02, 1.07e+02 0.00e+00, 0.00e+00, 0.00e+00 7.72e+02 1
 +00, 0.00e+00, 0.00e+00| (0, 0) | [2,3] - []
```

```
BEAMSTRAHLUNG
```

id lindex PDG DX. py, pz px_ep, py_ep , pz_ep energy lgen colorflow | [parents] - [daughters] spin [00000030] 0 11 0.00e+00, 0.00e+00, 1.50e+03 0.00e+00, 0.00e+00, 0.00e+00 1.50e+03 4 +00, 0.00e+00, 0.00e+00 (0, 0) [] - [2,3] [00000031] -11 0.00e+00, 0.00e+00, -1.50e+03 0.00e+00, 0.00e+00, 0.00e+00 1.50e+03 4 11 +00, 0.00e+00, 0.00e+00| (0, 0) | [] - [2,3] [00000032] 21 11 0.00e+00, 0.00e+00, 1.11e+03 0.00e+00, 0.00e+00, 0.00e+00 1.11e+03 3 +00. 0.00e+00, 0.00e+00 (0, 0) [0,1] - [4,5] [00000033] 31 -11 0.00e+00, 0.00e+00, -9.24e+01 0.00e+00, 0.00e+00, 0.00e+00 9.24e+01 3 +00, 0.00e+00, 0.00e+00 (0, 0) [0,1] - [4,5] [00000034] 41 13 2.25e+01, 3.03e+02, 3.19e+02 0.00e+00, 0.00e+00, 0.00e+00 4.41e+02 1 +00, 0.00e+00, 0.00e+00 (0, 0) [2,3] - [] [00000035] 5 -13|-2.25e+01,-3.03e+02, 6.96e+02| 0.00e+00, 0.00e+00, 0.00e+00| 7.59e+02| 1 +00, 0.00e+00, 0.00e+00 (0, 0) [2,3] - []

Whizard 2.8.3: $ee \rightarrow \mu\mu$

- There are no BS photons when BS is included in production
- Beamstrahlung photons are not visible in MCParticleSKimmed collection, and we cannot know if the reconstructed photon is BS photon. But we cab check it is ISR photon

Background samples

Process	N _{preselection}	N _{ISR}	event loss(%)
ее→үү	17578	3505	19.9
ее→ееγ	16449	9528	57.9
ее→ееүү	34717	14452	41.6
ee→qqγ	1287	543	42.1
ее→qqүү	13494	2801	20.8
ee→ννγ	54914	44961	81.9
ее→ννүү	54554	25830	47.3
			\smile

If at least one candidate photon comes from ISR (RecoMCTruthLink) all backgrounds have significant loss.

Di-photon mass distribution after MVA

OLD - all background

no mono-photon

All backgrounds rescaled

	N _s	N _b	Significance/δ(%)
All backgrounds	2060	63000	8.3/12
No mono photon	2360	17000	17/5.9
All backgrounds rescaled	1926	27000	11.32/8.9

Signal Fit

OLD

no mono-photon

No relevant changes in mean and width

All backgrounds rescaled

Pull Distribution

The width of the pull distribution is reduced, resulting in a drop of statistical uncertainty from 8.3%, 4.3% and 6%.

Summary

• After 5000 Toy-MC experiments uncertainty is 8.3%, 6 % and 4.3 % when including all backgrounds, rescaling all backgrounds, removing mono-photon backgrounds respectively.