Boosting sensitivity in searches for Dark Matter and heavy resonances with ATLAS

Oklahoma State University

On behalf of ATLAS Collaboration

BOOST 2021

August 2-5, 2021

Outline

Dark matter searches with full Run 2 dataset:

- Search for dark matter produced in association with a dark Higgs decaying into $W^{\pm}W^{\pm}$ or ZZ in fully hadronic final states: **Phys. Rev. Lett. 1126 (2021) 121802** [arXiv:2010.06548]
 - Four prompt tagger.
- Search for Dark Matter produced in association with a SM Higgs boson decaying to b-quarks. [ATLAS-CONF-2021-006]
 - Identifying boosted $H \to b\overline{b}$.

Heavy resonances searches with full Run 2 dataset:

- Search for $t\bar{t}$ resonances in fully hadronic final states: **JHEP 10 (2020) 61** [arXiv:2005.05138]
 - Tagging boosted tops.
- Search for pair-production of vector-like quarks with at least one leptonically-decaying Z boson and a third-generation quark: [ATLAS-CONF-2021-024]
 - Multi-class Boosted Object tagger.
- Search for a single vector-like B quark production and decay via $B \to bH(b\overline{b})$: [ATLAS-CONF-2021-018]
 - Identifying boosted $H \to b\overline{b}$.
- Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks: Eur. Phys. J. C. 81 (2021) 313 [arXiv:2010.02098]
 - BDT classifier using jet substructure variables.
- Search for high-mass $W\gamma$ and $Z\gamma$ resonances: [ATLAS-CONF-2021-041]
 - Tagging boosted W/Z bosons.

Search for DM produced in association with a dark Higgs

- Search for DM in the context of a two-mediator-based DM model containing a new U'(1) gauge symmetry which yields an additional spin-1 vector Z' boson via the new scalar boson s.
 - The relevant model parameters are DM particle mass (m_χ) , $m_{Z'}$, m_s , $g_{\rm q}$ ($Z'q\overline{q}$ coupling) and g_χ .
 - W/Z are required to be on-shell: 160 GeV < $m_{\scriptscriptstyle S}$ < 360 GeV and 0.5 TeV < $m_{Z'}$ < 2.5 TeV.
 - Final states characterized by large $E_{
 m T}^{
 m miss}$ and at least two high- $p_{
 m T}$ large-R jets.
- ▶ Main backgrounds estimated with MC samples: V+jets, $t\bar{t}$, VH
 - Alternative MC samples used to estimate MC modelling systematics.
- ▶ Track-assisted reclustered (TAR) jets used: based on reclustering R = 0.4 jets with R = 0.8.
 - Using associated tracks to construct mass and substructure variables: tracks rescaled using R = 0.4 jets information to account for contributions from neutral particles.

Search for DM produced in association with a dark Higgs

upper limit on μ

- ► Two selection categories defined: **Merged** and **Intermediate**.
 - Merged category:
 - Four-prong jets expected ($s \to VV \to q \overline{q} q' \overline{q}'$), for signals with $m_{\rm S} \ll m_{Z'}$.
 - Background reduced by requiring $0.0 < \tau_4/\tau_2 < 0.3$ and $0.0 < \tau_4/\tau_3 < 0.6$.

▶ 1 μ - and 2l- CRs defined to correct MC samples.

Search for DM produced in association with a SM Higgs

- Search for DM in the context of a two-Higgs-doublet model together with an additional pseudo-scalar a or vector boson (Z'):
 - Z'-2HDM scenario which adds an heavy vector boson. This model is used mainly as a benchmark for high-mass resonances.
 - 2HDM+a scenario which add a new pseudo scalar singlet.
 - Introduction of the \geq 3b jets category sensitive to bbA production with $\tan \beta$ = 10!
- $H o b\overline{b}$ decay mode used in this search.
 - For large $m_{Z'}$ and m_A values boosted final-state Higgs boson is expected if $m_A \ll m_{Z'}$ (Z'-2HDM scenario) or $m_a \ll m_A$ (2HDM-a scenario).
 - Large-R (R = 1.0) jets used to reconstruct Higgs boson in boosted channel.
- This analysis benefits from VR track jets to identify boosted Higgs boson candidate.
 - b-tagged VR track jets ghost-associated to large-R jet Higgs candidate is required.
 - VR track jets allow to reconstruct b-jets in highly boosted Higgs boson final states: $R_{\rm eff}(p_{\rm T})=30~{
 m GeV}/p_{
 m T}$ with 0.02 < $R_{\rm eff}(p_{T})$ < 0.4
 - Large-R mass from Higgs candidate (m_h) used as fitted observable in 0-lepton channel.

Search for DM produced in association with a SM Higgs

- Good description of the data by SM expectation in resolved and boosted regions.
 - 95% CL exclusion limits are derived for the studied signal models.

Boosted

2D limits derived:

- $(m_{Z'}, m_A)$ for Z'-2HDM scenario.
- (m_a, m_A) for 2HDM+a scenario.
- VR track jets allow to extend limits:
 - ▶ up to $m_{Z^{'}} \approx$ 3 TeV for $m_{\rm A} \approx$ 300 GeV.
 - ▶ up to $m_{\rm A} \approx$ 1 TeV for $m_{\rm a}$ = 100 GeV.

Search for $t\bar{t}$ resonances in fully hadronic final states

- ightharpoonup Search for heavy $t\bar{t}$ resonances in fully hadronic final states.
 - Predicted by topcolor-assisted-technicolor (TC2), two-Higgs-doublet model (2HDM) and Randall-Sundrum (RS) models of warped extra dimensions.
 - Two boosted t/\bar{t} quarks expected in the final state for resonances in the TeV mass range.
- Large-R jets used to collect top decay products (**LCTopo Large-**R jets):
 - They are built from topological clusters that are calibrated to hadronic energy scale with local cluster weighting (LCW) using anti- k_t jet algorithm with R = 1.0.
 - Trimming procedure applied to remove contributions from pile-up and soft radiation.
 - Constituents from R=0.2, k_t jets with $p_{\rm T}^{R=0.2}/p_{\rm T}^{R=1.0}<0.05$ removed.
 - $m_{\rm I}$ calculated combining calorimeter energy measurement with tracking information:

$$m_{\rm J} = \frac{\sigma_{\rm calo}^{-2}}{\sigma_{\rm calo}^{-2} + \sigma_{\rm TA}^{-2}} \times m^{\rm calo} + \frac{\sigma_{\rm TA}^{-2}}{\sigma_{\rm calo}^{-2} + \sigma_{\rm TA}^{-2}} \times m^{\rm TA}$$

- JES/JER and JMS/JMR calibrations apply to Large-R jets.

- b-tagged VR track jets to identify b-jets within top candidates.
 - Two SRs depending on number of b-jets jets: SR1b, SR2b
- ► DNN-based top tagger applied to suppress multijet background (flat efficiency 80% WP):
 - Trained with several substructure variables: $p_{\rm T}, m_{\rm J}, e_3, C_2, D_2, \tau_{21}, \tau_{32}, \sqrt{d_{12}}, \sqrt{d_{23}}, Q_{\rm w} \dots$
 - Top tagger performance corrected by means of SFs estimated by comparing data and MC in $t\bar{t}$ events.

Search for $t\bar{t}$ resonances in fully hadronic final states

- Background estimated directly from data by performing a fit with a smoothly falling spectrum:
 - Fitting function validated in SRs by using data-driven multijet estimation.

- Up to $m_{Z'} \approx 4.7$ excluded depending of Z' decay width
- Improved analysis techniques such as top and b-tagging highly improves limits compared to previous round of this search.

Search for a pair-production of vector like quarks

- Existence of VLQ predicted by many BSM theories:
 - Composite Higgs, Little Higgs ...
 - spin-1/2 fermions that in some models often assumed to couple preferentially to a top or b quarks.
- This search focus on pair-production of T and B VLQ particles in events with at least two e or μ originated from Z decays.

- ► Large-R reclustered (RC) jets used to identify V/H,top
 - Reclustered jets: small-R jet input to jet clustering.
- Multi-Class Boosted Objet Tagger (MCBOT)
 - DNN trained with 18 input variables to identify jet origin:
 - $p_{\rm T}$, mass, RC constituents, b-tagging score of three leading RC constituents.
 - Simultaneous identification of V/H/top jets
 - In case of ambiguities choose tag with highest score.

Search for a single vector-like B quark

- This search is focused on single-produced vector-like B-quark decaying to $B \to bH, H \to b\overline{b}$ final state.
 - As a result 95% CL limits derived on coupling constant $c_{\rm Z}$ appearing in the simplified VLQ model.

- ► LCTopo large-*R* jets to reconstruct boosted Higgs decay products.
 - Two-pronged energy profile originated from $b\overline{b}$ expected.
- ► *b*-tagging and Higgs tagging techniques applied to reduce multijet background.
 - Data-driven method to estimate remaining multijet contribution.
- ▶ b-tagging algorithm (DL1r) based on multivariate classification technique is used to identify small-R jets containing a b-hadron.
- Information from track impact parameter, reconstructed muons in jets and topological properties of secondary and tertiary decay vertices are included.
- ► VR track jets ghost-associated to large-*R* are inspected for *b*-tagging:
 - At least one *b*-tagged VR track jet is required within the Higgs candidate.
- No excess was found between the data and the expected background.

Search for pair production of scalar leptoquarks

- Similarities between quark and lepton SM sectors motivate to hypothesize a fundamental
 - symmetry between the two sectors:
 - GUT, Pati-Salam model on SU(4), RPV SUSY models ...
 - New class of bosons carrying both L and B numbers.
- This search targets LQ pair production focused on:
 - LQ $\rightarrow e/\mu$ t, where top quark decays hadronically.
 - Final state signature described by pair leptons and a pair of LCTopo large-R jets.

- ▶ BDT approach based on kinematic variables and jet substructure variables applied to classify events as originating from the signal or background in SR.
 - Best discriminating variables: $m_{l_1 l_2}$, $p_{T, l_1} + p_{T, l_2}$, m_{J_1} , m_{J_2} , $m_{l_1 l_2 J_1 J_2}$.
 - ${\color{blue}\textbf{L}}$ Parametrize BDT to maximize sensitivity in a wide m_{LO} range.
 - Dedicated CRs defined to control normalization of dominant backgrounds such as $t\bar{t}$ and Z+jets.

LQ

Search for high-mass $W\gamma$ and $Z\gamma$ resonances

- \blacktriangleright BSM theories predict new X^\pm and X^0 bosons to couple to the SM W^\pm and Z bosons and photons.
 - For large X^{\pm} and X^0 masses, boosted W^{\pm}/Z and a high- $p_{\rm T}$ γ expected in the final state.
- Large-R jets used to reconstruct boosted W^{\pm}/Z candidates:
 - Jets built from track-calorimeter clusters (TCCs)
 which combines information from the calorimeter and ID.
 - Thanks to tracking information, very good reconstruction performance found for jet-substructure variables at high- $p_{\rm T}$.
 - D_2 variable used to identify 2-prong structure expected from $W^\pm/{\rm Z}$ decays.
 - Mass window cuts applied consistent to m_W and m_Z .

Conclusions

- Several searches for DM particles and heavy resonances have been presented.
- Boosting techniques allows to improve sensitivity to signal models where boosted heavy particles are expected in the final state.
 - Mainly in models where resonances in TeV mass range decay to O(EW)-massive particles, such as, Higgs, W/Z and tops.
 - They allow to extend sensitivity of searches to very massive particles.
 - Improving the performance of boosted top/W/Z and Higgs taggers has allowed to increase sensitivity to smaller signal cross-sections.
 - More improvements will come In the future!

