QCD physics measurements at the LHCb experiment BOOST 2021

Daniel Craik on behalf of the LHCb collaboration

Massachusetts Institute of Technology

4th August, 2021

Introduction

Hadronisation & jet fragmentation

- Charged hadrons in jets
- ▶ J/ψ in jets

Covering a selection of recent jet-physics analyses but will focus on new Z + c results

The LHCb Detector

nt. J. Mod. Phys. A 30 (2015) 1530022

- ▶ Forward detector optimised for *b* and *c*-physics
- Precise vertexing and charged particle ID information
- \blacktriangleright Complementary angular acceptance to GPDs: 0.6° to $\sim 15^\circ$

The LHCb Detector: Kinematics

- LHCb coverage sensitive to large and small x
- Increasingly functioning as a general purpose detector in the forward region

Dan Craik (MIT)

Hadronisation & jet fragmentation

Charged hadrons in forward Z + j

- Study hadronisation in Z-tagged jets at LHCb
- ► First measurements at forward rapidities
- Dominated by light-quark jets cf. gluon jets for mid-rapidities
- Hadrons found to more longitudinally and transversely collimated
- Simulation underestimates number of high-p hadrons

Phys. Rev. Lett. 123 (2019) 232001

Dan Craik (MIT)

$J\!/\psi$ in forward jets

- Study production of quarkonium in jets
- Identify prompt vs from-b using pseudo-lifetime fits
- Measure fraction of jet *p*_T carried by *J*/ψ

Phys. Rev. Lett. 118 (2017) 192001

- ▶ From-b distribution well described
- ► Data disagree with fixed-order NRQCD for prompt J/ψ
- Lower than expected isolation may be related to quarkonimum polarisation puzzle

Dijet cross sections

- Distinguish between flavours of jet based on properties of displaced secondary vertices
- Run 1 studies used BDTs trained to distinguish between light- and heavy-flavour jets, and between beauty and charm
- \triangleright c (b) jets tagged with \sim 25 % (\sim 65 %) efficiency, with a 0.3 % light jet mis-tag rate

- Heavy-flavour quarks typically produced in pairs at LHC through flavour creation or annihilation, or gluon splitting
- Distinguish dijet flavours using fit to the sums of single-jet BDT outputs (templates shown right)

JHEP 02 (2021) 023

$c\overline{c}$ and $b\overline{b}$ cross sections

- Differential cross sections measured in η and p_T of the leading jet as well as the rapidity gap and invariant mass of the dijet
- cc and bb cross sections consistent with predictions
- Ratio also found to be consistent

Intrinsic charm

- Extrinsic charm content of the proton arises from soft gluon splitting
- Proton may also have an *intrinsic* charm content bound to valance quarks
- Current limits do not rule out a percent-level IC component in the proton
- Previous results have been claimed as evidence both for and against IC
- Important for understanding other processes
 - e.g. percent-level IC would lead to percentlevel corrections to relative rates of Higgs production mechanisms

Intrinsic charm

- PDF of IC may be valance-quark-like or sea-quark-like
- In particular, valance-like IC would produce a clear signature at x > 0.1
- ▶ Probe high-*x* charm to search for IC

Intrinsic charm: Z + c

- Study production of c-jets in association with a Z
- Forward region sensitive to high-x, high-Q² charm content of the proton

LHCb-PAPER-2021-029 NEW!

- Analysis based on Run 2 dataset
- ► Select events with $Z \rightarrow \mu^+ \mu^$ and at least one jet with $p_T > 15 \text{ GeV}/c$
- Identify *c*-jets using displacedvertex tagger in bins of jet *p*_T and *Z* rapidity
- Unfold jet p_T to obtain results in fiducial volume, p_T > 20 GeV
- Tagger must distinguish charm jets from beauty and mistagged light jets ...

Reconstruct displaced vertices within jets

Reconstruct displaced vertices within jets

Z + c: displaced-vertex *c*-tagger

- Reconstruct displaced vertices within jets
- Use 2D fit to corrected mass and number of tracks to distinguish charm jets from beauty and light

DV

Use 2D fit to corrected mass and number of tracks to distinguish charm jets from beauty and light

•
$$m_{\rm cor}({\rm DV}) \equiv \sqrt{m({\rm DV})^2 + [\rho({\rm DV})\sin\theta]^2} + \rho({\rm DV})\sin\theta$$

jet

p

Dan Craik (MIT)

Z + c: displaced-vertex c-tagger

- ► Reconstruct displaced vertices within jets
 - Use 2D fit to corrected mass and number of tracks to distinguish charm jets from beauty and light
- $m_{\rm cor}({\rm DV}) \equiv \sqrt{m({\rm DV})^2 + [p({\rm DV})\sin\theta]^2} + p({\rm DV})\sin\theta$
- Templates from flavour-enhanced calibration samples
- Determine tagger efficiency using dijet events ...

OCD @ LHCb

iet

► Trigger on DV in "other" jet

tag

probe

▶ Trigger on DV in "other" jet ▶ Tag prompt $D^0 \rightarrow K^- \pi^+$, $D^+ \rightarrow K^- 2\pi^+$

▶ Trigger on DV in "other" jet ▶ Tag prompt $D^0 \rightarrow K^- \pi^+$, $D^+ \rightarrow K^- 2\pi^+$ ▶ Correct for eff, FF and BF

▶ Trigger on DV in "other" jet ▶ Tag prompt $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-2\pi^+$ ▶ Correct for eff, FF and BF

▶ Trigger on DV in "other" jet ▶ Tag prompt $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-2\pi^+$ ▶ Correct for eff, FF and BF

▶ Trigger on DV in "other" jet ▶ Tag prompt $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-2\pi^+$ ▶ Correct for eff, FF and BF

Efficiency determined as function of jet p_{T} :

23.9 \pm 1.4 %, 24.4 \pm 1.9 % and 23.6 \pm 4.1 % for $\rho_{T} \in$ (20, 30), (30, 50) and (50, 100) GeV/c

Source	Relative Uncertainty
c tagging	6–7%
DV-fit templates	3–4%
Jet reconstruction	1%
Jet $p_{\rm T}$ scale & resolution	1%
Total	8%

- ► Leading systematic uncertainty due to *c*-tagging calibration
- Systematics almost all cancel between y(Z) bins so double ratios have good potential for future precision measurements
- ► However, current results are statistically limited

- Clear enhancement in highest-y bin
- Consistent with expected effect from |uudccc> component predicted by LFQCD
- Inconsistent with No-IC theory at ~ 3 standard deviations
- Global PDF analysis required to determine true significance

- ► Wide range of QCD results
- \triangleright *Z* + *c* in forward region provides first direct probe of IC
- Clear enhancement in highest-y bin
- May give first unambiguous evidence for IC in the proton but global PDF analyses required
- Statistically limited but Run 3 dataset should give definitive answer

Stay tuned!