Safely Eating Junk: Pileup and Infrared Radiation AnNiHilAtion (PIRANHA)

Motivation

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

Samuel Alipour-fard

in collaboration with Patrick Komiske, Eric Metodiev, and Jesse Thaler

MIT

samuelaf@mit.edu

Boost 2021

August 2, 2021

1

Grooming:

A systematic procedure for removing contaminating soft radiation from particle collision data.

Experiment: Groomed information is resilient to detector effects, pileup, initial state radiation CMS:[1807.05974], ATLAS:[1711.08341]

Theory: Grooming can facilitate precision calculations of jet substructure observables Frye-Larkoski-Schwartz-Yan: [1603.09338]

Frye-Larkoski-Schwartz-Yan: [1603.09338] Marzani-Schunk-Soyez: [1712.05105]

Focus on mMDT Dasgupta-Fregoso-Marzani-Salam: [1307.0007] (AKA Soft Drop with β = 0: Larkoski-Marzani-Soyez-Thaler: [1402.2657])

Motivation

PIRANHAs from Geometry

Grooming techniques such as Soft Drop/mMDT implement hard cutoffs (z_{cut}) , leading to **discontinuous behavior**:

Geometry

Introducing: PIRANHA Grooming

PIRANHA:

A systematic procedure for *continuously* removing contaminating soft radiation (no hard cutoffs).

Intuitively described as the optimal transport of piranhas hungry for soft radiation.

 Recursive safe subtraction is a tree-based PIRANHA grooming procedure analogous to procedures like Soft Drop/mMDT.

5

Introducing: Recursive Safe Subtraction (RSS)

Soft Drop/mMDT

- Check $z > z_{cut}$.
- Failed: Groom softer branch and continue.
- Passed: Keep remaining jet.

PIRANHAs from Geometry

Soft Drop/mMDT

- Check $z > z_{cut}$.
- Failed: Groom softer branch and continue.
- Passed: Keep remaining jet.

PIRANHA-RSS

- Check $z > z_{cut}^{(n)}$. $(z_{cut}^{(0)} = z_{cut})$
- ► Failed: Groom softer branch, set $z_{cut}^{(n+1)} = z_{cut}^{(n)} - z$, and continue.
- ▶ Passed: Remove energy from the softer branch, $z \rightarrow z - z_{cut}^{(n)}$, and keep remaining jet.

Motivation

PIRANHAs from Geometry

PIRANHA Grooming: Eating up the competition

Let's compare the continuity of PIRANHA-RSS grooming to that of Soft Drop/mMDT:

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

PIRANHA groomers are continuous!

Fixed coupling, one emission calculations:

Motivation

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

PIRANHA in Pythia 8.244, QCD jets, $P_T \ge 500$ GeV:

Motivation Geometry Strengths of PIRANHA Grooming

Punchlines!

 Grooming is an important tool in the study of high energy microscopic physics.

 PIRANHA grooming is a continuous strategy for grooming based on geometry and optimal transport.

 PIRANHA grooming methods overcome discontinuities of previous methods.

Motivation

PIRANHAs from Geometry

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

11

- Experiment: Groomed information is resilient to detector effects, pileup, initial state radiation CMS:[1807.05974], ATLAS:[1711.08341]
- Theory: Grooming can facilitate precision calculations of jet substructure observables Frye-Larkoski-Schwartz-Yan: [1603.09338]

Frye-Larkoski-Schwartz-Yan: [1603.09338] Marzani-Schunk-Soyez: [1712.05105]

mMDT: Dasgupta-Fregoso-Marzani-Salam: [1307.0007] Soft Drop: Larkoski-Marzani-Soyez-Thaler: [1402.2657]

To simplify conclusions for the rest of the talk, we will limit ourselves to mMDT, or Soft Drop with β = 0.

Motivation

PIRANHAs from Geometry

Grooming techniques such as Soft Drop/mMDT implement hard cutoffs (z_{cut}), leading to **discontinuous behavior**.

Consequences:

- Increased sensitivity to detector effects
- Theoretical complications Hoang-Mantry-Pathak-Stewart: [1906.11843]

Motivation

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

PIRANHA groomers are continuous!

Fixed coupling, multiple emission calculations:

Motivation

PIRANHAs from Geometry

Robustness of PIRANHA

PIRANHA groomers are continuous!

Let's examine the implications of the continuity of PIRANHA in Pythia 8.244 on QCD jets, with $P_T \ge 500$ GeV:

- Hadronization (parton level vs. hadron level)
- Detector effects (Proxy: all vs. charged)
- Underlying event (UE: multi-parton interactions on vs. off)

Comparing Soft Drop/mMDT and PIRANHA-RSS, both with z_{cut} = .1.

Motivation

PIRANHAs from Geometry

Robustness of PIRANHA: Hadronization

Motivation PIRANHAs from Geometry Strengths of

PIRANHA Grooming

Robustness of PIRANHA: Detector Proxy

Motivation PIRANHAs from Geometry

Subtleties of PIRANHA: Underlying Event

UE modeled by multi-parton interactions in Pythia:

Motivation PIRANHAs from Geometry Strengths of

PIRANHA Grooming

 Unlike Soft Drop/mMDT, RSS can remove only a limited amount of energy, leading to slight responses to the underlying event.

Subtleties of PIRANHA: Underlying Event

For RSS, we can *increase* z_{cut} to remove additional radiation/corrections due to the underlying event:

Motivation

PIRANHAs from Geometry

Subtleties of PIRANHA: W Tagging

W Tagging: RSS leads to shifted mass determinations and worse mass resolution:

z_{cut} = .1 grooms too much!
 Mass shifted by ~12%

Subtleties of PIRANHA: W Tagging

W Tagging: RSS leads to shifted mass determinations and worse mass resolution:

This time, *decrease* z_{cut} to remove less radiation.
 Mass shifted by ~2%.

Subtleties of PIRANHA: W Tagging

W Tagging: RSS leads to shifted mass determinations and worse mass resolution:

This time, *decrease z_{cut}* to remove less radiation.
 Mass shifted by ~2%.

Summary

Strengths:

- Hadronization: RSS is more robust to the effects of hadronization than Soft Drop/mMDT.
- Detector effects: Using simple models of smearing, RSS appears to be more robust to detector effects than Soft Drop/mMDT.

Subtleties:

- ▶ Underlying event: Distributions of observables in RSS jets are robust against UE, especially if we shift *z*_{cut} to account for UE.
- W Tagging: RSS leads to shifted mass determinations and worse mass resolution, but potentially greater acceptance.

Motivation

PIRANHAs from Geometry

Grooming vs. Pileup Mitigation

Motivation

PIRANHAs from Geometry

Grooming vs. Pileup Mitigation

Motivation

PIRANHAs from Geometry

Generations of Groomers

Generalizations of IRC Safety

Komiske-Metodiev-Thaler: [2004.04159]

PIRANHA Grooming

Grooming: Remove contaminating soft radiation.

PIRANHA: *Continuously* subtract off contaminating soft radiation *using geometry*.

First Solution:

$$\mathcal{E}_{\text{groomed}} = \mathcal{E}_{\text{C}} = \operatorname{argmin}_{\mathcal{E}'} \text{EMD} \left(\mathcal{E}, \mathcal{E}' + \rho \mathcal{U} \right)$$
 (1)

Motivation

PIRANHAs from Geometry

PIRANHA Grooming

Solution:

$$\mathcal{E}_{\text{groomed}} = \mathcal{E}_{\text{C}} = \operatorname{argmin}_{\mathcal{E}'} \text{EMD} \left(\mathcal{E}, \mathcal{E}' + \rho \mathcal{U} \right)$$

Motivation

PIRANHAs from Geometry

PIRANHA Grooming

Solution:

$$\mathcal{E}_{\text{groomed}} = \mathcal{E}_{\text{C}} = \operatorname{argmin}_{\mathcal{E}'} \text{EMD} \left(\mathcal{E}, \mathcal{E}' + \rho \mathcal{U} \right)$$

Well studied in optimal transport \rightarrow Apollonius grooming!

$$p_{T,i}^{\text{groomed}} = p_{T,i} - \rho A_i^{\text{Apoll.}}$$

Motivation

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

Komiske-Metodiev-Thaler: [2004.04159]

PIRANHA Grooming: The Cast of Characters

► Apollonius grooming: Closest to optimal transport

$$p_{T,i}^{\text{groomed}} = p_{T,i} - \rho A_i^{\text{Apoll}}$$

- ▶ Weakness: computationally expensive
- Would like to develop models of the geometric grooming procedure
- Keep IRC safety/continuity in event space while improving computational power

Motivation

PIRANHAs from Geometry

PIRANHA Grooming: The Cast of Characters

> Apollonius grooming: Closest to optimal transport

$$p_{T,i}^{\text{groomed}} = p_{T,i} - \rho A_i^{\text{Apoll.}}$$

Iterated Voronoi Subtraction: Efficient variant

$$p_{T,i, \text{ n}^{\text{th}}\text{step}}^{\text{groomed}} = p_{T,i, \text{ n}^{\text{th}}\text{step}} - \rho A_{i, \text{ n}^{\text{th}}\text{step}}^{\text{Voronoi}}$$

Recursive Safe Subtraction: Closest to traditional grooming methods

Motivation

PIRANHAs from Geometry

PIRANHA Grooming: Eating up the competition

Motivation

PIRANHAs from Geometry

PIRANHA-RSS

Failed: Groom energy from

both branches (softer

branch completely), set

 $z_{\text{cut}}^{(n+1)} = z_{\text{cut}}^{(n)} - z/f$, and

• Check $z > fz_{cut}^{(n)}$.

 $(z_{\rm cut}^{(0)} = z_{\rm cut})$

continue

SD/mMDT

Check $z > z_{\text{cut}} \theta^{\beta}$.

Failed:

Groom

softer branch

and continue

Motivation

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

PIRANHA-RSS

- Check $z > f z_{cut}^{(n)}$. $(z_{cut}^{(0)} = z_{cut})$
- Failed: Groom energy from both branches (softer branch completely), set z⁽ⁿ⁺¹⁾_{cut} = z⁽ⁿ⁾_{cut} - z/f, and continue
- ► Passed: Groom energy from both branches, z → z - fz⁽ⁿ⁾_{cut}, and keep remaining jet.

Motivation

PIRANHAs from Geometry

Strengths of PIRANHA Grooming

Robustness of PIRANHA: Hadronization

Motivation PIRANHAs from Geometry Strengths of

PIRANHA Grooming

Robustness of PIRANHA: Detector Proxy

Motivation PIRANHAs from Geometry Strengths of PIRANHA Grooming

Subtleties of PIRANHA: Underlying Event

In RSS, we may increase z_{cut} to remove additional radiation/corrections due to the underlying event:

UE, z_{cut} = .1: Max is 106% the max of no UE
 UE, z_{cut} = .11: Max is 101% the max of no UE

Some Interesting Quantities for Groomed Jets

Dropped energy

$$\Delta_E = E(\mathcal{E}) - E(\mathcal{E}_{\mathrm{groomed}})$$

Generalized jet energy correlation functions (GECFs)

$$egin{aligned} C_1^{(eta)} &= \sum_{i,j\in ext{jet}} z_i z_j heta^eta, \ (C_1^{(2)} &\sim m^2/p_T^2) \end{aligned}$$

Motivation

PIRANHAs from Geometry

Emissions of RSS Groomed Jets

RSS where at every branch, only the softer branch is groomed (f = 1). There will be three types of emissions:

- Pre-critical emissions: completely groomed away, using up some of the grooming parameter
- One critical emission: the first emission to survive the grooming process
- Subsequent emissions: emissions after the critical emission, completely ungroomed

Motivation

PIRANHAs from Geometry

Lund Diagrammar

39

ion

Lund Diagrammar

$$\log(z^{-1})$$

pre-critical veto
critical veto
 $\log(\theta^{-1})$

Motivation PIRANHAs fro

Geometry

Lund Diagrammar: Critical Emissions

Motivation PIRANHAs from Geometry

Lund Diagrammar: Pre-critical Emissions

$$\Sigma_{\mathrm{pre}}(z_{\mathrm{pre}}| heta_{\mathrm{crit}})\Sigma_{\mathrm{crit}}(heta_{\mathrm{crit}}) = \exp\left[-\left[-\left[\begin{array}{c} & & & \\ & & & & \\ & & & &$$

Motivation

PIRANHAs from Geometry

Lund Diagrammar: Subsequent Emissions

$$\Sigma_{
m sub}(C_1^{(eta)}) pprox \exp\left[-
ight]$$

Motivation

PIRANHAs from Geometry