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• New charge-energy correlation

• Flavor dependence with simulations for EIC 

• Charge correlations in recursive soft drop structure

• Summary 

Outline
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• two particles
• L and NL particles  - choosing nonperturbative region 

Jets and access to the dynamics of hadronization
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Parton shower evolution +
nonperturbative gluon splitting

𝝿 + 

𝝿 -

𝝿0 

𝛾 Dynamics of hadronization 
can be studied through 
correlations among particles 
in a jet

Hadronization 
(nonperturbative) 
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A  unique detailed way of study hadronization 



New charge-energy correlation

Observable : charge-energy correlation, rc
Ø Correlations in momentum, charge and flavor
Ø Leading(L)  and next-to-leading (NL) 

momentum particles in a jet

leading

next-to
-leadingJet
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A few notes on momentum-charge correlations

• Consider jets in which the leading particle (L) and next-to-leading (NL)
are both pions.

• If the charges of these pions are random (or if L is fixed and NL is
random) then for those events where both L and NL pions are charged,

N random
CC = N random

CC =
N random

2
(1)

where CC indicates opposite charges, CC, same charge.

• Now consider an “alternating” picture: perturbative shower gives qL
followed by q̄

0
NL, which form pions by sharing a soft pair:

qL + q̄NL ! qL + (q̄s + qs) + q̄
0

NL ! ⇡(qL, q̄s) + ⇡(qs, q̄
0

NL) (2)

Then we get

Nalternating

CC
= Nalternating ,

Nalternating
CC = 0 , (3)

and all pairs of L and NL charged pions have opposite charges.

• Suppose every event results from one of these two processes, with no
interference. If a is the percentage of “alternating” events and 1� a of
“random” events

rasy ⌘ NCC � NCC

NCC + NCC

=
1� a

2
�

✓
1� a

2
+ a

◆
= �a . (4)

In this (classical) picture a measurement of rasy is a measurement
of the fraction of hadronizations that are “string-like”, alternating be-
tween quark and antiquark. This is surely too simple, but this mea-
surement has information.

• Measurements of r can be made di↵erentially in fractions zL and zNL in
a jet, and in terms of a variety of “transverse” kinematic variables: rel-
ative transverse momentum, pair invariant mass, pair formation time,
etc, including polarization where applicable. These can serve as bench-
marks for a future theory of hadronization.
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: # Jets where L and NL particles   
with same sign charges

: # Jets where L and NL particles
with opposite sign charges

𝒓𝒄 ≡ !!! " !!"!
!!! # !!"!
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A new observable with momentum, charge and flavor of leading and next-to-leading particles 



Significance of

Partonic final state                    : 𝒖 and (𝒖
Combine charge-neutral pair  :    (𝒅 and  𝒅

“alternating” picture : 
“random” picture :

no charge correlation 
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= 0

rc is a measure of the fraction of “string-like hadronization”

(𝒖

𝒖 (𝒅
𝒅

𝞹+

𝞹-

Charge-neutral pair
rasy =  -1
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rc = 0

rc = -1 string

𝒓𝒄 ≡ !!! " !!"!
!!! # !!"!
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Results for PYTHIA and Herwig studies
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PYTHIA 6.428
Herwig 7.1.5
Q2 > 50 GeV2

anti-kT R = 1.0
pT,jet > 5 GeV/c
-2.8 <𝝶jet <2.8

pT,part > 0.2 GeV/c
-3.5 <𝝶part <3.5

Jets : 

Event Generation :
EIC : ep@18x275
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Herwig++ Physics and Manual
M. Bhat, et al., Eur.Phys.J.C58:639-
707,2008

PYTHIA 6.4 Physics and Manual
Torbjorn Sjostrand, Stephen Mrenna, Peter 
Skand JHEP 0605:026,2006

PYTHIA and Herwig has different models of hadronization



Charge-energy correlation with formation time
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• There is strong flavor dependence 
in rc

• In specific kinematic region PYTHIA 
and Herwig differ significantly

Formation time : [2z(1-z) P]/kperp
2

z      :    momentum fraction of NL particle
kperp: Relative transverse  momentum 
between L & NL 

𝒓𝒄 ≡ !!! " !!"!
!!! # !!"!
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The Observable with “Formation time”
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Case-I   (L : 𝜋 - NL : K ±)
Case-II  (L : 𝜋 +     NL : K ±)

In general, rc shows strong flavor dependence and we explore 
further the utility of strange flavor tagging : 

Charge-energy correlation with flavor tagging

8

Strange Jet Tagging
Yuichiro Nakai, David Shih, Scott Thomas
arXiv:2003.09517

strange flavor tagging 



Flavor correlations

𝑠̅

𝝿 -(d.𝑢)
K -(s.𝑢)

d

Struck 
valance 
quark

With struck valance quark, L(𝝿 -) NL(K +) is preferable for the simplest 
string breaking between L and NL particles 
ØFrom this naive picture one expects rc for 𝜋 - K ± to be stronger than  

that of 𝜋 + K ±
BOOST 2021 - Mriganka M Mondal

𝝿 -(d.𝑢)

K +(u𝑠̅)

d

s

𝝿 +(u𝑑̅)

K -(s.𝑢)

u

𝑠̅

𝝿 +(u𝑑̅)
K +(u𝑠̅)

u

s
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Difference in flavor combinations
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• Correlations are much stronger for  𝜋–K± than for  𝜋+K± in PYTHIA
• As pT increases 𝜋+K± correlations weakens whereas 𝜋–K± strengthens
• Significant difference between PYTHIA and Herwig

rc rc 𝒓𝒄 ≡ !!! " !!"!
!!! # !!"!

L: 𝜋+, NL: K±

L: 𝜋-, NL: K±
L: 𝜋+, NL: K±

L: 𝜋-, NL: K±

anti-kT R=1.0anti-kT R=1.0
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EIC : Electron Ion Collider 

11

arXiv:2103.05419 EIC Yellow Report

LHC, LEP, ILC : can also make such interesting measurements 

The new machine planned to operate at Brookhaven National Lab
during 2032+
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EIC can perform such measurement precisely and H1 and STAR data are being explored 

https://arxiv.org/abs/2103.05419


Subjet structure
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Soft Drop
Andrew J. Larkoski, Simone Marzani, Gregory Soyez, Jesse Thaler
JHEP 1405 (2014) 146

Recursive Soft Drop
Frédéric A. Dreyer, Lina Necib, Gregory Soyez, Jesse Thaler
JHEP06(2018)093

The Lund Jet Plane :
Frederic A. Dreyer, Gavin P. Salam, Gregory Soyez
JHEP06(2018)093

• Significant literature on jet substructure and grooming techniques are available.
• We used some of the available techniques.



Subjet structure
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L(or NL)

L(or NL)

NL(or L)

n=1

n=2n=1

L and NL particle get resolved in first prong (n =1)

L and NL particle get resolved in the second 
prong (n=2)

NL(or L)

• Confronting the nonperturbative origin of L 
NL particles with perturbative splittings

• L, NL particles are strongly correlated with 
the hardest patron in Pythia and Herwig

• Prong structure represent the partonic proxy

Using Recursive soft drop

� defining how much collinear radiation is removed by the grooming procedure. It is also

convenient to introduce a reference angular scale R0 (absorbable into the definition of zcut),

which is typically set to the initial jet clustering radius R. We denote by pt,i the transverse

momentum of the i-th subjet, and by �Rij the rapidity-azimuth distance between the i-th

and j-th subjets.

The SD algorithm proceeds as follows:

1. Undo the last C/A clustering step of the jet j and label the two parent subjets as j1
and j2.

2. If these subjets pass the SD condition,

z12 > zcut

✓
�R12

R0

◆�

, z12 ⌘
min(pt,1, pt,2)

pt,1 + pt,2
, (2.1)

then the procedure stops and the SD jet j is returned.

3. Otherwise, the softer subjet (by pt) is removed and the algorithm iterates on the new

jet j defined by the harder subjet.

4. If j has no further subjets, either terminate without returning a jet (tagging mode)

or define j to be the SD jet (grooming mode).

As explained in Ref. [42], this algorithm is infrared and collinear (IRC) safe for � > 0 in

grooming mode, though it remains Sudakov safe [115, 116] for � ! 0.1 The limits zcut ! 0

or � ! 1 return an ungroomed jet. Finally, the limit � ! 0 corresponds to mMDT [28].

2.2 Introducing Recursive Soft Drop

As depicted in Fig. 2, RSDN grooms a jet by applying N layers of SD declustering, iterating

through the full jet clustering tree. This is achieved by ordering all branches by the �Rij

separation of their constituents, and iterating through the tree structure by taking the

branch with the most widely-separated constituents at each step.

More explicitly, starting from a C/A-reclustered jet:

1. Set the list of branches to a single element: the initial jet.

2. Take the remaining branch whose two parent subjets have the widest separation in

�R, and label these j1 and j2.2 Remove that branch from the list of branches.

3. If the two subjets pass the SD condition in Eq. (2.1), keep both subjets as new

branches; otherwise, remove the softer of the two subjets and keep the hardest as a

new branch.
1
In tagging mode, SD is IRC safe for � < 0. If a non-trivial mass cut is applied, SD is also IRC safe in

tagging mode for � = 0.
2
During the first iteration, this step is of course trivial, since there is only one branch to the C/A tree.

– 4 –

- Anti-kt R=1.0 and C/A de-clustering tree
- following hardest branch
- dynamic radius



Kinematic region for various resolved prongs
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Recursive subjet : 𝛽=1, zcut= 0.1

n=1 : wide angle soft radiations
n=2 and higher are relatively harder splitting and narrower in angle

zcut= 0.1

n=1 n=2Inclusive

(PYTHIA-6.428)  ep@ 18x275, Q2 > 50 GeV/c, anti-kt R=1.0, pT,Jet > 5 GeV/c



rc • L & NL particle
• prong n=1 (L & NL resolved) 
• prong n=2 (L & NL resolved) 

BOOST 2021 - Mriganka M Mondal

L and NL particle and prong correlations 

15

• Pythia shows distinct features of rc with 𝜏Form.  (data and theoretical input are essential) 



Summary
• Hadronization can be studied very precisely at EIC (also LHC, LEP, ILC,… )
• A new charge-energy correlation observable, rc is introduced using the leading and 

next-to-leading particle’s charge and kinematic information
• Significant differences in rc observed for various flavor combinations
• Flavor-tagged data would have significant impact on the knowledge on string 

fragmentation inspired models
• It is essential to have particle identification in wide momentum range at EIC to realize 

the full potential of flavor-tagged measurements

• Understanding rc with prongs within C/A declustering tree is an alternative way to 
study hadronization

• Pythia shows distinct features of  rc with formation time for different nodes. These
need to be understood and measured from data

BOOST 2021 - Mriganka M Mondal 16



Original Slides 
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Connecting jet substructure to 
hadronization at the EIC

Mriganka Mouli Mondal
CFNS, Stony Brook University

Y.-T. Chien CFNS,SBU, A. Deshpande CFNS,SBU, G. Sterman CFNS,SBU
,
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• Jets and access to the dynamics of hadronization

• New charge-energy correlation

• Results for electron-proton collisions at the EIC

• Charge correlations in recursive soft drop structure

• Summary 

Outline
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Jets and access to the dynamics of hadronization
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Parton shower evolution +
nonperturbative gluon splitting

𝝿 + 

𝝿 -

𝝿0 

𝛾
Dynamics of hadronization 
can be studied through 
correlations among particles 
in a jet

Hadronization 
(nonperturbative) 

20



New charge-energy correlation

Observable : charge-energy correlation, rc
Ø Correlations in momentum, charge and flavor
Ø Leading(L)  and next-to-leading (NL) 

momentum particles in a jet

leading

next-to
-leadingJet
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A few notes on momentum-charge correlations

• Consider jets in which the leading particle (L) and next-to-leading (NL)
are both pions.

• If the charges of these pions are random (or if L is fixed and NL is
random) then for those events where both L and NL pions are charged,

N random
CC = N random

CC =
N random

2
(1)

where CC indicates opposite charges, CC, same charge.

• Now consider an “alternating” picture: perturbative shower gives qL
followed by q̄

0
NL, which form pions by sharing a soft pair:

qL + q̄NL ! qL + (q̄s + qs) + q̄
0

NL ! ⇡(qL, q̄s) + ⇡(qs, q̄
0

NL) (2)

Then we get

Nalternating

CC
= Nalternating ,
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Significance of

Partonic final state                    : 𝒖 and (𝒖
Combine charge-neutral pair  :    (𝒅 and  𝒅

“alternating” picture : 
“random” picture :

no charge correlation 
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= 0

rc is a measure of the fraction of “string-like hadronization”

(𝒖

𝒖 (𝒅
𝒅

𝞹+

𝞹-

Charge-neutral pair
rasy =  -1

BOOST 2021 - Mriganka M Mondal

rc = 0

rc = -1 string

𝒓𝒄 ≡ !!! " !!"!
!!! # !!"!
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Results for PYTHIA and Herwig studies

BOOST 2021 - Mriganka M Mondal

PYTHIA 6.428
Herwig 7.1.5
Q2 > 50 GeV2

anti-kT R = 1.0
pT,jet > 5 GeV/c
-2.8 <𝝶jet <2.8

pT,part > 0.2 GeV/c
-3.5 <𝝶part <3.5

Jets : 

Event Generation :
EIC : ep@18x275
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Charge-energy correlation with formation time

BOOST 2021 - Mriganka M Mondal

• There is strong flavor dependence 
in rc

• In specific kinematic region PYTHIA 
and Herwig differ significantly

Formation time : [2z(1-z) P]/kperp
2

z      :    momentum fraction of NL particle
kperp: Relative transverse  momentum 
between L & NL 

𝒓𝒄 ≡ !!! " !!"!
!!! # !!"!
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Case-I   (L : 𝜋 - NL : K ±)
Case-II  (L : 𝜋 +     NL : K ±)

In general, rc shows strong flavor dependence and we explore 
further the utility of strange flavor tagging : 

Charge-energy correlation with flavor tagging
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Flavor correlations

𝑠̅

𝝿 -(d.𝑢)
K -(s.𝑢)

d

Struck 
valance 
quark

With struck valance quark, L(𝝿 -) NL(K +) is preferable for the simplest 
string breaking between L and NL particles 
ØFrom this naive picture one expects rc for 𝜋 - K ± to be stronger than  

that of 𝜋 + K ±
BOOST 2021 - Mriganka M Mondal

𝝿 -(d.𝑢)

K +(u𝑠̅)

d

s

𝝿 +(u𝑑̅)

K -(s.𝑢)

u

𝑠̅

𝝿 +(u𝑑̅)
K +(u𝑠̅)

u

s
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Difference in flavor combinations
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• Correlations are much stronger for  𝜋–K± than for  𝜋+K± in PYTHIA
• As pT increases 𝜋+K± correlations weakens whereas 𝜋–K± strengthens
• Significant difference between PYTHIA and Herwig

rc rc 𝒓𝒄 ≡ !!! " !!"!
!!! # !!"!

L: 𝜋+, NL: K±

L: 𝜋-, NL: K±
L: 𝜋+, NL: K±

L: 𝜋-, NL: K±

anti-kT R=1.0anti-kT R=1.0
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EIC : Electron Ion Collider 

28

arXiv:2103.05419
EIC Yellow Report

LHC, LEP, ILC :
can also make such
Interesting measurements 

The new machine planned to operate at Brookhaven National Lab during 2032+ 

https://arxiv.org/abs/2103.05419
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Impact on EIC detector design 
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• An early impactful measurement at EIC :  
Ø Detector smearing does not affect this 
observable in a significant way

• Unique Opportunity at EIC : 
Ø RHIC and HERA has limitations to identify 
𝜋 and K at high momentum

Ø Particle identification requirement 
(~10 GeV/c for 𝜋/K in central region) 
is already at cutting edge technology

Ø Motivate further detector R&D to fulfill 
the PID requirement 

PYTHIA-ep@18x275
(1% of 10 fb-1)
Q2 > 50 GeV2

, anti-kT R=1.0

True
• L: 𝜋+, NL: K±

• L: 𝜋-, NL: K±
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Subjet structure
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L(or NL)

L(or NL)

NL(or L)

n=1

n=2n=1

L and NL particle get resolved in first prong (n =1)

L and NL particle get resolved in the second 
prong (n=2)

NL(or L)

• Confronting the nonperturbative origin of L 
NL particles with perturbative splittings

• L, NL particles are strongly correlated with 
the hardest patron in Pythia and Herwig

• Prong structure represent the partonic proxy

Using Recursive soft drop

� defining how much collinear radiation is removed by the grooming procedure. It is also

convenient to introduce a reference angular scale R0 (absorbable into the definition of zcut),

which is typically set to the initial jet clustering radius R. We denote by pt,i the transverse

momentum of the i-th subjet, and by �Rij the rapidity-azimuth distance between the i-th

and j-th subjets.

The SD algorithm proceeds as follows:

1. Undo the last C/A clustering step of the jet j and label the two parent subjets as j1
and j2.

2. If these subjets pass the SD condition,

z12 > zcut

✓
�R12

R0

◆�

, z12 ⌘
min(pt,1, pt,2)

pt,1 + pt,2
, (2.1)

then the procedure stops and the SD jet j is returned.

3. Otherwise, the softer subjet (by pt) is removed and the algorithm iterates on the new

jet j defined by the harder subjet.

4. If j has no further subjets, either terminate without returning a jet (tagging mode)

or define j to be the SD jet (grooming mode).

As explained in Ref. [42], this algorithm is infrared and collinear (IRC) safe for � > 0 in

grooming mode, though it remains Sudakov safe [115, 116] for � ! 0.1 The limits zcut ! 0

or � ! 1 return an ungroomed jet. Finally, the limit � ! 0 corresponds to mMDT [28].

2.2 Introducing Recursive Soft Drop

As depicted in Fig. 2, RSDN grooms a jet by applying N layers of SD declustering, iterating

through the full jet clustering tree. This is achieved by ordering all branches by the �Rij

separation of their constituents, and iterating through the tree structure by taking the

branch with the most widely-separated constituents at each step.

More explicitly, starting from a C/A-reclustered jet:

1. Set the list of branches to a single element: the initial jet.

2. Take the remaining branch whose two parent subjets have the widest separation in

�R, and label these j1 and j2.2 Remove that branch from the list of branches.

3. If the two subjets pass the SD condition in Eq. (2.1), keep both subjets as new

branches; otherwise, remove the softer of the two subjets and keep the hardest as a

new branch.
1
In tagging mode, SD is IRC safe for � < 0. If a non-trivial mass cut is applied, SD is also IRC safe in

tagging mode for � = 0.
2
During the first iteration, this step is of course trivial, since there is only one branch to the C/A tree.

– 4 –

- Anti-kt R=1.0 and C/A de-clustering tree
- following hardest branch
- dynamic radius

arXiv:1804.03657v2



Kinematic region for various resolved prongs
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Recursive subjet : 𝛽=1, zcut= 0.1

n=1 : wide angle soft radiations
n=2 and higher are relatively harder splitting and narrower in angle

zcut= 0.1

n=1 n=2Inclusive

(PYTHIA-6.428)  ep@ 18x275, Q2 > 50 GeV/c, anti-kt R=1.0, pT,Jet > 5 GeV/c
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Resolved prong (nR) and rC

32

• For 𝛽=1, zcut= 0.1  ~20%  of CC and 20% of C%C pairs get resolved in the first prong
• The average rc changes sightly depending on prong numbers where it get resolved  

𝛽=1, zcut= 0.1rc

1     2    3     4     5    6     7     8     9 1     2    3     4     5    6     7     8     9 1     2    3     4     5    6     7     8     9 

(Charges of prong assigned from the 
charge of  the leading particle within)



• L and NL particle
• N-prong (L & NL resolved) 

rc rc • L & NL particle
• prong n=1 (L & NL resolved) 
• prong n=2 (L & NL resolved) 

BOOST 2021 - Mriganka M Mondal

L and NL particle and prong correlations 

33

• rc converge when when reclusive prong matching allowed to higher depth (n=15 )

• Pythia shows distinct features of rc with 𝜏Form.  (data and theoretical input are very essential) 
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Summary
• Hadronization can be studied very precisely at EIC (also LHC, LEP, ILC,… )
• A new charge-energy correlation observable, rc is introduced using the leading and 

next-to-leading particle’s charge and kinematic information
• Significant differences in rc observed for various flavor combinations
• Flavor-tagged data would have significant impact on the knowledge on string 

fragmentation inspired models
• It is essential to have particle identification in wide momentum range at EIC to realize 

the full potential of flavor-tagged measurements

• Understanding rc with prongs within C/A declustering tree is an alternative way to 
study hadronization

• Pythia shows distinct features of  rc with formation time for different nodes. These 
need to be understood and measured from data

BOOST 2021 - Mriganka M Mondal 34



Backup
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Event acceptance in x-Q2
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Jets : Event Generation :
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Herwig has more instances when L and NL momentum share nearly equal momentum 

More events in HERWIG has small opening angle between L & NL particles

L NL kinematic distribution
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Formation time

Formation time = [2z(1-z) P] / kperp2

𝜏form < 1fm  : L and NL particles seem to separate after a very 
short time, which might decorrelate their hadronization.

𝜏form > 10 fm (Kperp< 200 MeV) : nonperturbative transverse 
momenta in the jet, and we don't think that going to longer 
𝜏form or smaller kperp leads to new dynamics

Important region to study in data 𝜏form = "a few 
fermi" and "a few dozen fermi",  kperp= “a few 
GeV” to “several hundred MeV”
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PL
PNL

kperp
kperp

𝑃𝐿
𝜃

𝑃𝑁𝐿
𝑃⃗

z = PNL/(PNL+PL)
PL = (1-z)P
PNL = zP
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Impact on EIC detector design 

arXiv:2103.05419: 
EIC Yellow Report
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L and NL correlations with the first split prongs  
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L and NL correlations with the first split prongs  
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L and NL correlations with the first split prongs  
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L and NL correlations with the first split prongs  
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(L NL resolved n =1)(all n =1)

• L, NL particles are strongly correlated with the harder prong in the first split
• However, some “resolved” prongs have strong correlations with a wide tail
• L NL particle are special : originates from the same string or cluster fragmentation 

which is of nonpertubative in origin 
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L and NL correlations in momentum  
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Resolved prong (nR) and rC

46

𝛽=1, zcut= 0.1

• For 𝛽=1, zcut= 0.1  10% (CC) and 30%(C%C) pairs ger resolved in first prong
• The average rc changes changes sightly depending on prong numbers where it get 

resolved  

rc


