Understanding boosted top tagging with N-subjettiness and Prong Finding

J. Helliwell with: M. Dasgupta

Work in progress

The University of Manchester

BOOST 2021

Introduction

- Tagging hadronically decaying top quarks, reconstructed as a single jet.
- Grooming, prong finding and jet shapes used in combination ((ATLAS 2016, CMS 2016))
- Understand what drives this type of tagging procedure
- Focus on Y_m -Splitter (M Dasgupta, M Guzzi, J Rawling, G Soyez, 2018) with a cut on the N-subjettiness ratio τ_{32} (J. Thaler, K, Tilburg 2011), and grooming with mMDT/ Soft drop (M. Dasgupta, A Fregoso, S Marzani, G Salam, 2013) (A. Larkoski, S Marzani, G Soyez, J. Thaler, 2014)
- Additional step of requiring jets to be within mass window $160 \text{ GeV} < m_{jet} < 225 \text{ GeV}$

figure adapted from arXiv:1909.12285FERMILAB-PUB-19-492-CMS-E

Study the performance and impact of NP effects and UE

Figure 2: mMDT + Ym-Splitter+ τ_{32}

- All three steps contribute to the performance
- Grooming and prong finding both necessary to reduce impact of NP effects and UE.

Analytic calculations for signal and background, accounting for finite au effects.

Making the most of the jet mass

Reducing M_{max} suppresses the background with very little effect on the signal

Jets Pre-groomed with mMDT.

Making the most of the jet mass

- This holds up at hadron level, leading to gains in signal significance.
- Hadronisation corrections < 15% for $M_{max} = 185$ GeV and $\tau = 0.4$.

Hadron level jets with UE from Pythia, pre-groomed with mMDT, tagged with Y_m-Splitter and a cut on au_{32}

mMDT + Y_m-Splitter + τ_{32} is an effective top-tagger and resilient to non-perturbative effects.

Performed analytic calculations for both signal and background distributions

 \blacksquare Understood the interplay between mass and τ_{32} cuts allowed us to use the mass cut to greatest effect.

Backup Slides

Parton Level, No ISR or MPI, Un-Groomed

Hadron Level, with ISR and MPI, Un-Groomed

Parton Level, No ISR or MPI, Groomed

Hadron Level, with ISR and MPI, Groomed

Top jets $\tau_{32} < 1$.

Light quark jets $\tau_{32} < 1$.