A Large Ion Collider Experiment

Topological separation of dielectron signals in Pb–Pb collisions with ALICE

20th SQM | Busan, South Korea 4–10 Apr 2022

Jerome Jung for the ALICE collaboration

Dielectron production in Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$

Invariant-mass spectrum

Dielectrons are produced at all stages of the collision and leave the system with negligible final-state interactions

→ Ideal probe to study properties of the quark-gluon plasma (QGP) created in ultra-relativistic heavy-ion collisions

The invariant mass of the pair can be utilised to differentiate between early and late contributions:

At intermediate masses (1.1 < $m_{\rm ee}$ < 2.7 GeV/ c^2):

- Correlated semi-leptonic decays of heavy-flavor (HF) hadrons
- QGP radiation

At lower masses ($m_{\rm ee} < 1.1 \ {\rm GeV}/c^2$):

- Decays of pseudoscalar and vector mesons $(\pi^0, \eta, \eta', \rho, \omega, \phi)$
- Contributions from the hadron-gas (HG) phase

Dielectron production in Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$

Excess-yield over hadronic cocktail

Separation of HF and QGP radiation in invariant mass m_{ee} and pair momentum $p_{T,ee}$ challenging

HF production expected to be modified
Cold-nuclear matter and hot-medium effects
Indication of HF suppression compared to pp
→ N_{coll}-scaled HF measured in pp exceeds the data Phys. Rev. C 102 (2020) 055204

HF modification can be modelled using the measured R_{AA} of $c/b \rightarrow e^{\pm}$ Phys. Lett. B 804 (2020) 135377

However: Large uncertainties of the measurements only allow upper limits for thermal contribution of the QGP

→ Cocktail independent method needed to access QGP radiation in the intermediate-mass region (IMR)

$\ensuremath{\mathsf{DCA}_{ee}}$ analysis

Distance-of-closest approach (DCA):

DCA for pairs taking into account the DCA resolution:

$$DCA_{ee} = \sqrt{\frac{(DCA_1/\sigma_1)^2 + (DCA_2/\sigma_2)^2}{2}}$$

Already applied in pp collisions at $\sqrt{s} = 7$ TeV: JHEP 09 (2018) 064

Separation of prompt and non-prompt sources based on their decay topology:

→ Decay length of D- and B-mesons much larger than that of prompt sources

 \rightarrow DCA_{ee}(thermal) < DCA_{ee}(HF)

prompt non-prompt

Gives access to measurements of:

- \rightarrow Thermal radiation at low DCA_{ee}
- \rightarrow Suppression of HF production at high DCA_{ee}

Cocktail-scaled $\ensuremath{\mathsf{DCA}}_{ee}$ templates

J/ψ -mass region

Well suited as a control region:

- Mixture of prompt & non-prompt sources
- J/ ψ production well constrained by measurements
 - → Data well described by DCA_{ee} templates scaled with the hadronic cocktail

Comparison to $HF-N_{coll}$ scaled cocktail:

- Beauty dominates the spectrum at high $\ensuremath{\mathsf{DCA}_{ee}}$
- Charm more prominent at low DCA_{ee}
 - \rightarrow Data below HF expectation
 - \rightarrow Clear indication of HF suppression

SOM2022

Intermediate-mass region

Extraction of prompt thermal signal via template fits:

Beauty contribution fixed via separate fit at high DCA_{ee}
 bb: 0.74±0.24(stat.)±0.12(syst.) (w.r.t. N_{coll} scaling)

Simultaneous fit of charm and prompt contribution
 cc: 0.43±0.40(stat.)±0.22(syst.) (w.r.t. N_{coll} scaling)
 prompt: 2.64±3.18(stat.)±0.29(syst.) (w.r.t. R. Rapp)

First DCA_{ee} analysis in central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV to separate thermal radiation & HF background Method independent of hadronic cocktail but currently limited by statistics \rightarrow Run 3 and beyond with better DCA_{ee} resolution (x3-6) and much more statistics (x100)