

## Triangular flow measurements of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV in RHIC BES-II Prabhupada Dixit, for the STAR collaboration (IISER, Berhampur)

Azimuthal anisotropy of the final state particles produced in heavy-ion collisions is one of the sensitive observables to the equation of state and transport properties of the medium. In this poster, we present the 3<sup>rd</sup> order azimuthal anisotropy (v<sub>3</sub>) of multi-strange hadrons such as  $K_S^0$ ,  $\Lambda$ ,  $\phi$ ,  $\Xi^-$  and  $\Omega^-$  and their corresponding anti-particles in Au+Au collisions at  $\sqrt{s_{NN}} = 19.6$  GeV in mid-rapidity (lyl < 1.0) using high statistics BES-II data. The number of constituent quarks (NCQ) scaling for  $v_3$  and the hydrodynamics motivated ratio  $v_3/v_2^{3/2}$  are studied.

# Supported in part by the U.S. DEPARTMENT OF ENERGY Office of Science





## Abstract





## Elliptic flow coefficient $(v_2)$ : Initial spatial anisotropy (dominant source) + Event-by-event fluctuations Triangular flow coefficient $(v_3)$ : Event-by-event fluctuations in the overlap region



• Early freeze-out and small hadronic interaction cross section of multi-strange hadrons and  $\phi$  mesons make these particles excellent probe for the initial state. STAR, Nucl. Phys. A757, 102 (2005) • High statistics data from BES-II with improved detector condition enables us to measure v<sub>3</sub> at lower beam energies.



Momentum space anisotropy of particle emission

Prabhupada Dixit, Strangeness in Quark Matter -2022



## Simultaneous measurements of v<sub>2</sub> and v<sub>3</sub> are important to constrain the initial condition and shear viscosity to entropy ratio ( $\eta$ /s).



# Data sets and STAR detector

Prabhupada Dixit, Strangeness in Quark Matter -2022

## **Time Projection chamber (TPC)**

| <del>م</del> | Particle track                |
|--------------|-------------------------------|
| 6            | reconstruction                |
| •            | Particle identification by    |
| 5            | specific energy loss in TPC   |
| 4            | gas medium.                   |
| 3            | <b>Upgraded TPC has large</b> |
| 2            | pseudorapidity coverage       |
| )            | ( n <1.5) compared to BES-I   |
|              | —                             |

measurements.

• Particle identification for high p<sub>T</sub> (p<sub>T</sub> > 1.0 GeV/c) tracks.





# The n<sup>th</sup> order flow coefficient is given by

 $v_n = \langle \cos n(\phi - \Psi_n) \rangle \Psi_n$ : n<sup>th</sup> order event plane.

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

$$W_i \sin(n\phi_i)$$

80



The  $\Psi_2$  resolution improved by 10% compared to BES-I.



Prabhupada Dixit, Strangeness in Quark Matter -2022



# **Vn measurements** N. Borghini and J.-Y. Ollitrault, Phys. Rev. C 70, 064905 (2004)

Where,  $v_n^B(M_{inv}) = p_0 + p_1 M_{inv}$ 

Due to finite resolution of the event plane the observed v<sub>2</sub> must be corrected with the event plane resolution.



# **Results and summary**





Ekaterina Retinskaya et al. Phys. Rev. C 89, 014902 (2014)