SOM2の22

Triangular flow measurements of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s}{ }_{\mathrm{NN}}=19.6 \mathrm{GeV}$ in RHIC BES-II

Prabhupada Dixit, for the STAR collaboration (IISER, Berhampur)

Abstract

Azimuthal anisotropy of the final state particles produced in heavy-ion collisions is one of the sensitive observables to the equation of state and transport properties of the medium. In this poster, we present the 3 rd order azimuthal anisotropy (v_{3}) of multi-strange hadrons such as $\mathrm{K}^{0}, \Lambda, \phi, \Xi^{-}$and Ω^{-}and their corresponding anti-particles in $\mathrm{Au}+\mathrm{Au}$ collisions at ${\sqrt{\mathrm{s}_{\mathrm{NN}}}}=19.6 \mathrm{GeV}$ in mid-rapidity ($\mathrm{ly} \mathrm{l}<1.0$) using high statistics BES-II data. The number of constituent quarks (NCQ) scaling for v_{3} and the hydrodynamics motivated ratio $\mathrm{v}_{3} / \mathrm{v}_{2}{ }^{3 / 2}$ are studied.

Elliptic flow coefficient (v_{2}) : Initial spatial anisotropy (dominant source) + Event-by-event fluctuations Triangular flow coefficient $\left(v_{3}\right)$: Event-by-event fluctuations in the overlap region

Simultaneous measurements of v_{2} and v_{3} are important to constrain the initial condition and shear viscosity to entropy ratio ($\eta / s)$.

- Early freeze-out and small hadronic interaction cross section of multi-strange hadrons and ϕ mesons make these particles excellent probe for the initial state. STAR, Nucl. Phys. A757, 102 (2005)
- High statistics data from BES-II with improved detector condition enables us to measure v_{3} at lower beam energies.

Data sets and STAR detector

Analysis details

The $n^{\text {th }}$ order flow coefficient is given by

$$
v_{n}=\left\langle\cos n\left(\phi-\Psi_{n}\right)\right\rangle \quad \Psi_{\mathrm{n}}: \mathrm{n}^{\text {th }} \text { order event plane. }
$$

Ψ_{n} measurements

v_{n} measurements

N. Borghini and J.-Y. Ollitrault, Phys. Rev. C 70, 064905 (2004)

$$
\left.\begin{array}{rl}
\Psi_{n} & =\frac{1}{n} \tan ^{-1}\left(\frac{Q_{y}}{Q_{y}}\right)
\end{array}\right) \begin{aligned}
& \text { A. M. Poskanzer and S. A. Voloshin, } \\
& \text { Phys. Rev. C 58, 1671 (1998) }
\end{aligned}
$$

Where the weight factor $\mathrm{w}_{\mathrm{i}}=\mathrm{p}_{\mathrm{T}} \times \phi$-weight.
ϕ-weight: accounts for the azimuthal acceptance correction of the detectors.

Event plane resolution

$R_{\text {sub }}=\left\langle\cos n\left(\psi_{n}-\psi_{R}\right)\right\rangle$
Ψ_{R} : true reaction plane angle
The Ψ_{2} resolution improved by $\mathbf{1 0 \%}$

$$
\begin{aligned}
& v_{n}^{S+B}\left(M_{i n v}\right)=\left\langle\cos \left[n\left(\phi-\psi_{n}\right)\right]\right\rangle=v_{n}^{S} \frac{S}{S+B}\left(M_{i n v}\right)+v_{n}^{B} \frac{B}{S+B}\left(M_{i n v}\right) \\
& \text { Where, } v_{n}^{B}\left(M_{i n v}\right)=p_{0}+p_{1} M_{i n v}
\end{aligned}
$$

Due to finite resolution of the event plane the observed v_{2} must be corrected with the event plane resolution.

Results and summary

