

Azimuthal angular decorrelation of dijets in UPC PbPb collisions at 5.02 TeV with CMS CMS-HIN-18-011

Alexander Bylinkin

On behalf of the CMS Collaboration

Strangeness in Quark Matter 2022: 14th June 2022, Busan, Korea

Outline

- Exclusive dijet photoproduction in UPC PbPb @5 TeV
- Motivation
 - First step to access novel features of gluon distributions
- CMS Detector and analysis selections
- Results
 - Comparison with recent theoretical calculations

Motivation

Exclusive dijet photoproduction is directly sensitive to the Wigner and Husimi gluon distributions describing the multidimensional structure of the gluons (Hatta, et al, *PRL 116, 202301 (2016)*)

Second Fourier harmonic of the azimuthal distribution

where φ is the angle between P_T and Q_T :

 $v_2 = \langle \cos(2\phi) \rangle,$ $\cos(\phi) = \vec{Q}_T \cdot \vec{P}_T / (|| \vec{Q}_T || \cdot || \vec{P}_T ||)$

2nd Fourier harmonic and theoretical calculation

Recent theoretical calculations by Y. Hatta et al. PRL 126, 142001 (2021) performed following the our preliminary results.

- The standard TMD framework is used for resummation.
- Soft gluon emission from the final state jets results in a positive $\langle \cos(2\varphi) \rangle$
- Wigner gluon distributions are neglected
- Photoproduced dijets $(Q_T << P_T)$

CMS Detector

Electromagnetic Barrel Calorimeter (EB): $|\eta| < 1.5$ Electromagnetic Endcap Calorimeter (EB): $1.5 < |\eta| < 3.0$ Hadron Barrel Calorimeter (HB): $|\eta| < 1.3$ Hadron Endcap Calorimeter (HE): $1.3 < |\eta| < 3.0$ Hadron Forward Calorimeter (HF): $3.0 < |\eta| < 5.2$ CMS offers perfect rapidity coverage to measure jets

Analysis selections

CMS

- At least one track in the central tracker
- Particle flow jets using the anti- k_t algorithm with R=0.4
- Only two jets $|\eta_{lab}| < 2.4$, $p_{T,1} > 30$ GeV, $p_{T,2} > 20$ GeV
- Veto activity in the forward region (2.8 < $|\eta|$ < 5.2): HF, HE and EE calorimeters

RAPGAP MC extensively exploited for **ep** collisions at HERA is used for modelling exclusive dijet photoproduction via photon-gluon fusion

Rapidity Gap Selection

 $\gamma + Pb \rightarrow jet + jet + Pb^*$ events are asymmetric in dijet rapidity (according to RAPGAP MC).

• Rapidity Gap Selection:

Forward Rapidity Gap, $\Delta \eta^{F} = 2.4 - \eta_{max} \eta_{max} - high-purity track with$ **p** $_{T} > 0.2 GeV$

• Two separate data sets are defined: Backward Rapidity Gap $\Delta \eta^{B} > \Delta \eta^{F}$, and the other $\Delta \eta^{F} > \Delta \eta^{B}$

• Samples are merged by changing the rapidity sign of the jets in the $\Delta \eta^{F} > \Delta \eta^{B}$ dataset. 6

Exclusivity requirements

HIN-18-011, submitted to PRL, arXiv:2205.00045 [hep-ex]

https://cms-results.web.cern.ch/cms-results/publicresults/publications/HIN-18-011/

No tracker activity far from the jets to reject non-exclusive and two-photon processes.

- $\max[\eta_{jet} \eta_{track}] < 1$
- $\Delta \eta^{\text{B}} > 1.2$

These selections keep 99% of signal (according to RAPGAP MC) and significantly reduce the remaining non-exclusive background

HIN-18-011, submitted to PRL, arXiv:2205.00045 [hep-ex]

https://cms-results.web.cern.ch/cms-results/publicresults/publications/HIN-18-011/

- Good agreement between data and MC.
- Photon flux in RAPGAP correctly reproduced for the UPC γ Pb data.

Dijet kinematics

HIN-18-011, submitted to PRL, arXiv:2205.00045 [hep-ex]

https://cms-results.web.cern.ch/cms-results/publicresults/publications/HIN-18-011/

 k_2

Large momentum transfer regime (DIS-type)

- The measurement is performed in $Q_T < 25$ GeV
- → 6785 dijet events pass all analysis selections.

• $P_T > Q_T$: "back-to-back limit"

Vector sum of 2 jets:

 $\vec{Q}_T = \vec{k_1} + \vec{k_2}$

Vector difference of 2 jets

 $\vec{P}_T = \frac{1}{2}(\vec{k_1} - \vec{k_2})$

CMS

Dijet angular distribution and 2nd Fourier harmonic: Analysis cross checks

HIN-18-011, submitted to PRL, arXiv:2205.00045 [hep-ex]

https://cms-results.web.cern.ch/cms-results/publicresults/publications/HIN-18-011/

✓ Toy MC: back-to-back jets with detector resolution effects $<\cos(2\phi)> \rightarrow 1$

• **Mixed events** have no physical correlation: negative $\langle \cos(2\varphi) \rangle$ value

• $<\cos(2\varphi)>$ in data is below back-to-back expectation and RAPGAP prediction

• $<\cos(2\varphi)>$ rises steadily in the data in contrast to a constant value after $Q_T > 2$ GeV in the theory: DIS vs Photoproduction regime?

Summary

- First measurement of azimuthal anisotropy from UPC Dijets in PbPb at 5 TeV
- First measurement of $\langle \cos(2\varphi) \rangle$ connected to the gluon Wigner/Husimi distribution, believed to be the most fundamental gluon distribution
- RAPGAP MC (ep expectation) overestimates the strength of the correlations
 - The data are compared to the latest theory calculation by Y. Hatta *et al.* (soft-gluon radiation from final-state jets):
 - Good agreement in the average magnitude of the correlations for dijet momentum less than 15 GeV
 - This calculation exhibits a rapid plateau, in contrast of the steady rise observed in the data.

Thank you for your attention!

Thank you for your attention!

Exclusive dijets in UPC PbPb @5 TeV (CMS-HIN-18-011)

Systematic uncertainties:

- Jet Energy Scale Correction (JES): ±2%
- Jet Energy Scale non-closure (JESnc): -5%
- Jet Energy Resolution (JER): 15% for 20 GeV jets
- Jet Angular Resolution (JAR): 0.03 for 20 GeV jets
- Rapidity Gap Selection (PUR): BRG > [0,2]
- Trigger Efficiency (TR)

<i>Q</i> _T [GeV]	JES	JESnc	JER	JAR	PUR	TR	Total
0-5	0.042	0.011	0.008	0.009	0.002	0.009	0.046
5-10	0.036	0.021	0.004	0.006	0.008	0.008	0.044
10-15	0.027	0.017	0.007	0.004	0.007	0.009	0.035
15-20	0.021	0.020	0.032	0.003	0.001	0.006	0.044
20-25	0.008	0.029	0.091	0.002	0.006	0.008	0.096