Resummed lattice QCD equation of state at finite baryon density: strangeness neutrality and beyond

Paolo Parotto, Pennsylvania State University
June 15, 2022
Strangeness in Quark Matter 2022

PRD 105 (2022) 114504

PennState
with:

S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, A. Pásztor, C. Ratti, K. K. Szabó

The equation of state of QCD

What do we know about QCD thermodynamics at finite T, μ_{B} ?

From a combination of approaches (experiment, models, first principle calculations, ...), we have some knowledge of the phase diagram.

- Ordinary nuclear matter at $T \simeq 0$ and $\mu_{B} \simeq 922 \mathrm{MeV}$
- Deconfinement transition at $\mu_{B}=0$ is a smooth crossover at $T \simeq 155-160 \mathrm{MeV}$
- Transition line at finite μ_{B} is known to some precision (+ freeze-out extraction)
- EoS of QCD: expansion up to $\mu_{B} \simeq 2-2.5 T$
- Critical point? Exotic phases?

The equation of state (EoS) of QCD is invaluable. Knowing it would mean we can really draw the phase diagram of QCD.

The EoS of QCD at $\mu_{B}=0$

- A crucial input to hydrodynamic simulations of e.g., heavy-ion collisions
- Known at $\mu_{B}=0$ to high precision for a few years now (continuum limit, physical quark masses) $\longrightarrow \quad$ Agreement between different calculations

From grancanonical partition function \mathcal{Z}

* Pressure: $p=-k_{B} T \frac{\partial \ln \mathcal{Z}}{\partial V}$
* Entropy density: $s=\left(\frac{\partial p}{\partial T}\right)_{\mu_{i}}$
* Charge densities: $n_{i}=\left(\frac{\partial p}{\partial \mu_{i}}\right)_{T, \mu_{j \neq i}}$
* Energy density: $\epsilon=T s-p+\sum_{i} \mu_{i} n_{i}$
* More (Fluctuations, etc...)

Finite density: the sign/complex action problem

Euclidean path integrals on the lattice are calculated with MC methods using importance sampling, interpreting the factor $\operatorname{det} M[U] e^{-S_{G}[U]}$ as the Boltzmann weight for the configuration U

$$
\begin{aligned}
Z(V, T, \mu) & =\int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-S_{F}(U, \psi, \bar{\psi})-S_{G}(U)} \\
& =\int \mathcal{D} U \operatorname{det} M(U) e^{-S_{G}(U)}
\end{aligned}
$$

- If there is particle-antiparticle-symmetry $(\mu=0) \operatorname{det} M(U)$ is real
- For real chemical potential $\left(\mu^{2}>0\right) \rightarrow \operatorname{det} M(U)$ is complex (complex action problem) and has wildly oscillating phase (sign problem)
\Rightarrow It cannot serve as a statistical weight
- For purely imaginary chemical potential $\left(\mu^{2}<0\right) \rightarrow \operatorname{det} M(U)$ is real again, simulations can be made!

Finite density: alternatives

In lattice QCD one tries to work around the sign problem directly (still exploratory)

- Reweighting techniques \rightarrow exciting new results
- Complex Langevin
- Lefschetz thimbles
- ...
or indirectly:
- Taylor expansion around $\mu_{B}=0$

$$
\frac{p\left(T, \mu_{B}\right)}{T^{4}}=\sum_{n=0}^{\infty} c_{2 n}(T)\left(\frac{\mu_{B}}{T}\right)^{2 n}, \quad c_{n}(T)=\frac{1}{n!} \chi_{n}^{B}\left(T, \mu_{B}=0\right)
$$

- Analytical continuation from imaginary μ_{B}

Lattice QCD at finite μ_{B} - Taylor expansion

- Thermodynamic quantities at large chemical potential become problematic
- Higher orders do not help with the convergence of the series

- Inherent problem with Taylor expansion: carried out at $T=$ const. This doesn't cope well with $\hat{\mu}_{B}$-dependent transition temperature
- Can we find an alternative expansion to improve finite- $\hat{\mu}_{B}$ behavior?

The alternative approach at $\mu_{Q}=\mu_{S}=0$

From an observation at imaginary μ_{B} we constructed (Borsányi et al., PRL 126 (2021) 232001) an ansatz to determine thermodynamics at finite (real) μ_{B} :

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa_{2}(T) \hat{\mu}_{B}^{2}+\kappa_{4}(T) \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)\right)
$$

Imaginary μ_{B} : strangeness neutrality

With the alternative scheme previously introduced at $\mu_{Q}=\mu_{S}=0$, we now move to strangeness neutrality $\left\langle n_{S}\right\rangle=0$, with $\mu_{Q}=0$.

The idea is to follow lines of constant "observable", instead of constant T.

Rigorous formulation

- The $\hat{\mu}_{B}$-dependence of certain observables amounts to a simple rescaling of the temperature T
- For a certain observable F, we can write:

$$
F\left(T, \hat{\mu}_{B}\right)=F\left(T^{\prime}, 0\right),, \quad \mathrm{T}^{\prime}=\mathrm{T}\left(1+\kappa_{2}^{\mathrm{F}}(\mathrm{~T}) \hat{\mu}_{\mathrm{B}}^{2}+\kappa_{4}^{\mathrm{F}}(\mathrm{~T}) \hat{\mu}_{\mathrm{B}}^{4}+\mathcal{O}\left(\hat{\mu}_{\mathrm{B}}^{6}\right)\right)
$$

- Important: this is a re-organization (resummation) of the Taylor expansion via an expansion in the shift

$$
\Delta T=T-T^{\prime}=\left(\kappa_{2}^{F}(T) \hat{\mu}_{B}^{2}+\kappa_{4}^{F}(T) \hat{\mu}_{B}^{4}+\mathcal{O}\left(\hat{\mu}_{B}^{6}\right)\right)
$$

- In fact, the coefficients of the (Taylor) expansion in $\hat{\mu}_{B}$ and those of our expansion in ΔT are related directly, e.g. at $\mu_{Q}=\mu_{S}=0$ for $\chi_{1}^{B} / \hat{\mu}_{B}$:

$$
\kappa_{2}(T)=\frac{1}{6 T} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B^{\prime}}(T)} \quad \kappa_{4}(T)=\frac{1}{360 \chi_{2}^{B^{\prime}}(T)^{3}}\left(3 \chi_{2}^{B^{\prime}}(T)^{2} \chi_{6}^{B}(T)-5 \chi_{2}^{B^{\prime \prime}}(T) \chi_{4}^{B}(T)^{2}\right)
$$

Determine κ_{n}

The procedure, visualized:

Determine κ_{n}

The procedure, visualized:

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Strangeness neutrality

- In this work, we look at three observables:

$$
c_{1}^{B}\left(\hat{\mu}_{B}, T\right), \quad \mathrm{M}\left(\hat{\mu}_{B}, T\right)=\frac{\mu_{S}}{\mu_{B}}\left(\hat{\mu}_{B}, T\right), \quad \chi_{2}^{S}\left(\hat{\mu}_{B}, T\right)
$$

where

$$
c_{n}^{B}=\frac{d^{n}}{d \hat{\mu}_{B}^{n}} \frac{p}{T^{4}}=\left(\frac{\partial}{\partial \hat{\mu}_{B}}+\frac{d \hat{\mu}_{S}}{d \hat{\mu}_{B}} \frac{\partial}{\partial \hat{\mu}_{S}}\right)^{n} \frac{p}{T^{4}}=\left(\frac{\partial}{\partial \hat{\mu}_{B}}-\frac{\chi_{11}^{B S}}{\chi_{2}^{S}} \frac{\partial}{\partial \hat{\mu}_{S}}\right)^{n} \frac{p}{T^{4}} \quad \Rightarrow c_{1}^{B} \equiv \chi_{1}^{B}
$$

are the Taylor coefficients of the pressure along the strangeness neutral line, and μ_{S} realizes strangeness neutrality.

- We introduce a "Stefan-Boltzmann" (SB) correction, in that we normalize every quantity wrt its ($\hat{\mu}_{B}$-dependent) SB limit. This ensures the method is applicable (and improves results) at large T.
Note: this can be done in the non-strangeness neutral case too.

The alternative approach at strangeness neutrality

With SB correction:

$$
\frac{c_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\bar{c}_{1}^{B}\left(\hat{\mu}_{B}\right)}=\frac{c_{2}^{B}\left(T^{\prime}, 0\right)}{\bar{c}_{2}^{B}(0)}, \quad T^{\prime}=T\left(1+\lambda \hat{\mu}_{B}^{2}\right)
$$

The alternative approach at strangeness neutrality

Similarly, for μ_{S} / μ_{B} and χ_{2}^{S} :

$$
\frac{\mathrm{M}\left(\mathrm{~T}, \hat{\mu}_{\mathrm{B}}\right)}{\overline{\mathrm{M}}\left(\hat{\mu}_{B}\right)}=\frac{\mathrm{M}\left(\mathrm{~T}_{\mathrm{BS}}^{\prime}, 0\right)}{\overline{\mathrm{M}}(0)}
$$

$$
\frac{\chi_{2}^{\mathrm{S}}\left(\mathrm{~T}, \hat{\mu}_{\mathrm{B}}\right)}{\overline{\chi_{2}^{\mathrm{S}}\left(\hat{\mu}_{\mathrm{B}}\right)}}=\frac{\chi_{2}^{\mathrm{S}}\left(\mathrm{~T}_{\mathrm{SS}}^{\prime}, 0\right)}{\overline{\chi_{2}^{\mathrm{S}}}(0)}
$$

The SB correction has no effect here, because both $\overline{\mathrm{M}}\left(\hat{\mu}_{B}\right)=\overline{\mathrm{M}}(0)$ and $\overline{\chi_{2}^{S}}\left(\hat{\mu}_{B}\right)=\overline{\chi_{2}^{S}}(0)$

The alternative approach at strangeness neutrality

We give the new coefficients the name λ, because they define a different (although closely related) expansion

As expected, λ_{2} goes to zero, making the expansion applicable at larger T and $\hat{\mu}_{B}$ Borsányi, PP et al. PRD 105 (2022) 114504

Thermodynamics at finite (real) μ_{B}

Thermodynamic quantities at finite (real) μ_{B} can be reconstruted from the same ansazt:

$$
\frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}}=c_{1}^{B}\left(T, \hat{\mu}_{B}\right)=c_{2}^{B}\left(T^{\prime}, 0\right) \frac{\overline{c_{1}^{B}}\left(\hat{\mu}_{B}\right)}{\overline{c_{2}^{B}}(0)}
$$

with $T^{\prime}=T\left(1+\lambda_{2}^{B B}(T) \hat{\mu}_{B}^{2}+\lambda_{4}^{B B}(T) \hat{\mu}_{B}^{4}\right)$.
From the baryon density n_{B} one finds the pressure:

$$
\frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}=\frac{p(T, 0)}{T^{4}}+\int_{0}^{\hat{\mu}_{B}} \mathrm{~d} \hat{\mu}_{B}^{\prime} \frac{n_{B}\left(T, \hat{\mu}_{B}^{\prime}\right)}{T^{3}}
$$

then the entropy, energy density:

$$
\begin{aligned}
& \frac{s\left(T, \hat{\mu}_{B}\right)}{T^{4}}=4 \frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}+\left.T \frac{\partial p\left(T, \hat{\mu}_{B}\right)}{\partial T}\right|_{\hat{\mu}_{B}}-\hat{\mu}_{B} \frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}} \\
& \frac{\epsilon\left(T, \hat{\mu}_{B}\right)}{T^{4}}=\frac{s\left(T, \hat{\mu}_{B}\right)}{T^{3}}-\frac{p\left(T, \hat{\mu}_{B}\right)}{T^{4}}+\hat{\mu}_{B} \frac{n_{B}\left(T, \hat{\mu}_{B}\right)}{T^{3}}
\end{aligned}
$$

Thermodynamics at finite (real) μ_{B} - strangenesss neutrality

- We can reach out to $\hat{\mu}_{B} \simeq 3.5$ with reasonable uncertainties
- Good agreement with HRG
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B} - strangenesss neutrality

- We can reach out to $\hat{\mu}_{B} \simeq 3.5$ with reasonable uncertainties
- Good agreement with HRG
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B} - strangenesss neutrality

- We can reach out to $\hat{\mu}_{B} \simeq 3.5$ with reasonable uncertainties
- Good agreement with HRG
- No pathological (non-monotonic) behavior is present

What is different with strangeness neutrality?

- The difference between the two cases is simply driven by different chemical potentials
- The quality of the results is comparable

Difference in the pressure is less visible, because dominated by $\mu_{B}=0$ contribution.

Beyond strangeness neutrality

Move away from the strangeness neutrality $\left\langle n_{S}\right\rangle=0$, where $\hat{\mu}_{S}=\hat{\mu}_{S}^{\star}$, by an amount $\Delta \hat{\mu}_{S} \equiv \hat{\mu}_{S}-\hat{\mu}_{S}^{\star}:$

$$
\chi_{1}^{S}\left(\hat{\mu}_{S}\right) \approx \chi_{2}^{S}\left(\hat{\mu}_{S}^{\star}\right) \Delta \hat{\mu}_{S}
$$

$$
\chi_{1}^{B}\left(\hat{\mu}_{S}\right) \approx \chi_{1}^{B}\left(\hat{\mu}_{S}^{\star}\right)+\chi_{11}^{B S}\left(\hat{\mu}_{S}^{\star}\right) \Delta \hat{\mu}_{S}
$$

Expand in strangeness-to-baryon ratio R :

$$
R=\frac{\chi_{1}^{S}}{\chi_{1}^{B}}=\frac{\chi_{2}^{S}\left(\hat{\mu}_{S}^{\star}\right) \Delta \hat{\mu}_{S}}{\chi_{1}^{B}\left(\hat{\mu}_{S}^{\star}\right) \Delta \hat{\mu}_{S}+\chi_{11}^{B S}\left(\hat{\mu}_{S}^{\star}\right)}
$$

which gives:

$$
\Delta \hat{\mu}_{S}=\frac{R \hat{\chi}_{1}^{B}\left(\hat{\mu}_{S}^{\star}\right)}{\chi_{2}^{S}\left(\hat{\mu}_{S}^{\star}\right)-R \chi_{11}^{B S}\left(\hat{\mu}_{S}^{\star}\right)}
$$

The other quantity we need is $\chi_{11}^{B S}\left(\hat{\mu}_{S}^{\star}\right)$

Beyond strangeness neutrality

We then get the chemical potential shift $\Delta \hat{\mu}_{S}$, and from it the baryon density follows trivially

Beyond strangeness neutrality

The pressure receives no correction at $\mathcal{O}(R)$ (it would be $\sim \chi_{1}^{S}$):
$\hat{p}\left(T, \hat{\mu}_{B}, R\right) \approx \hat{p}\left(T, \hat{\mu}_{B}, 0\right)+\frac{1}{2} \frac{\mathrm{~d}^{2} \hat{p}}{\mathrm{~d} R^{2}}\left(T, \hat{\mu}_{B}\right) R^{2}$
with:

$$
\frac{\mathrm{d}^{2} \hat{p}}{\mathrm{~d} R^{2}}\left(T, \hat{\mu}_{B}\right)=\frac{\left(\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)\right)^{2}}{\chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)}
$$

This is the beginning of the extrapolation beyond $n_{S}=0$, better precision will be required

Summary

- The EoS for QCD at large chemical potential is highly demanded in heavy-ion collisions community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
- Because of technical/numerical challenges
- Because of phase structure of the theory
- An alternative expansion scheme tailored to the specific behavior of relevant observables seems a better approach (better convergence). Thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ have very reasonable uncertainties
- Successfully applied our procedure to strangeness neutrality, and moved beyond

Outlook

- Signal can be improved with better statistics
- Improved EoS at $\mu_{B}=0$ would have big impact on errors

BACKUP

An alternative approach

From simulations at imaginary μ_{B} we observe that $\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)$ at (imaginary) $\hat{\mu}_{B}$ appears to be differing from $\chi_{2}^{B}(T, 0)$ mostly by a rescaling of T :

$$
\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\chi_{2}^{B}\left(T^{\prime}, 0\right), \quad T^{\prime}=T\left(1+\kappa \hat{\mu}_{B}^{2}\right)
$$

An alternative approach

The other (BS) second order susceptibilities display a similar scenario:

$$
\frac{\chi_{1}^{S}}{\hat{\mu}_{B}}\left(T, \hat{\mu}_{B}\right)=\chi_{11}^{B S}\left(T^{\prime}, 0\right), \quad \chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)=\chi_{2}^{S}\left(T^{\prime}, 0\right)
$$

Lattice QCD at finite μ_{B} - Taylor coefficients

- Fluctuations of baryon number are the Taylor expansion coefficients of the pressure

$$
\chi_{i j k}^{B Q S}(T)=\left.\frac{\partial^{i+j+k} p / T^{4}}{\partial \hat{\mu}_{B}^{i} \partial \hat{\mu}_{Q}^{j} \partial \hat{\mu}_{S}^{k}}\right|_{\vec{\mu}=0}
$$

- Signal extraction is increasingly difficult with higher orders, especially in the transition region
- Higher order coefficients present a more complicated structure

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function $f(T)$ which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ. How does Taylor cope with it?

$$
f(T, \hat{\mu})=f\left(\Gamma^{\prime}, 0\right), \quad \Gamma^{\prime}=T\left(1+\kappa \hat{\mu}^{2}\right)
$$

We fitted $f(T, 0)=a+b \arctan (c(T-d))$ to $\chi_{2}^{B}(T, 0)$ data for a 48×12 lattice

Taylor expanding a (shifting) sigmoid

- The Taylor expansion seems to have problems reproducing the original function (left)
- Quite suggestive comparison with actual Taylor-expanded lattice data (right)

- Problems at T slightly larger than $T_{p c} \Rightarrow$ influence from structure in χ_{6}^{B} and χ_{8}^{B}

Determine κ_{n}

I. Directly determine $\kappa_{2}(T)$ at $\hat{\mu}_{B}=0$ from the previous relation
II. From our imaginary- $\hat{\mu}_{B}$ simulations $\left(\hat{\mu}_{Q}=\hat{\mu}_{S}=0\right)$ we calculate:

$$
\frac{T^{\prime}-T}{T \hat{\mu}_{B}^{2}}=\kappa_{2}(T)+\kappa_{4}(T) \hat{\mu}_{B}^{2}+\mathcal{O}\left(\hat{\mu}_{B}^{4}\right)=\Pi(T)
$$

III. Calculate $\Pi\left(T, N_{\tau}, \hat{\mu}_{B}^{2}\right)$ for $\hat{\mu}_{B}=i n \pi / 8$ and $N_{\tau}=10,12,16$
IV. Perform a combined fit of the $\hat{\mu}_{B}^{2}$ and $1 / N_{\tau}^{2}$ dependence of $\Pi(T)$ at each temperature, yielding a continuum estimate for the coefficients

$$
\Rightarrow \text { The } \mathcal{O}(1) \text { and } \mathcal{O}\left(\hat{\mu}_{B}^{2}\right) \text { coefficients of the fit are } \kappa_{2}(T) \text { and } \kappa_{4}(T)
$$

Determine κ_{n}

The procedure, visualized:

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Determine κ_{n}

The procedure, visualized:

Spline fit both at $\hat{\mu}_{B}=0$ and $\hat{\mu}_{B} \neq 0$, then determine $T-T^{\prime}$ (horizontal segments)

Rigorous formulation: $\mu_{Q}=\mu_{S}=0$

Similar relations can be derived analogously from:

$$
\frac{\chi_{1}^{S}}{\hat{\mu}_{B}}\left(T, \hat{\mu}_{B}\right)=\chi_{11}^{B S}\left(T^{\prime}, 0\right), \quad \quad \chi_{2}^{S}\left(T, \hat{\mu}_{B}\right)=\chi_{2}^{S}\left(T^{\prime}, 0\right)
$$

yielding:

$$
\begin{aligned}
\kappa_{2}^{B S}(T) & =\frac{1}{6 T} \frac{\chi_{31}^{B S}(T)}{\chi_{11}^{B S^{\prime}}(T)} & \kappa_{2}^{S}(T) & =\frac{1}{2 T} \frac{\chi_{22}^{B S}(T)}{\chi_{2}^{S^{\prime}}(T)} \\
\kappa_{4}^{B S}(T) & =\frac{1}{360 \chi_{11}^{B S^{\prime}}(T)^{3}}\left(3 \chi_{11}^{B S^{\prime}}(T)^{2} \chi_{51}^{B S}(T)\right. & \kappa_{4}^{S}(T) & =\frac{1}{24 \chi_{2}^{S^{\prime}}(T)^{3}}\left(\chi_{2}^{S^{\prime}}(T)^{2} \chi_{42}^{B S}(T)\right. \\
& \left.-5 \chi_{11}^{B S^{\prime \prime}}(T) \chi_{31}^{B S}(T)^{2}\right) & & \left.-3 \chi_{2}^{S^{\prime \prime}}(T) \chi_{22}^{B S}(T)^{2}\right)
\end{aligned}
$$

The results for $\kappa_{2}(T), \kappa_{4}(T)$

A similar picture appears for $\kappa_{n}^{B S}$ and $\kappa_{n}^{S S}$

NOTE: polynomial fits take into account both statistical and systematic correlations.

Thermodynamics at finite (real) μ_{B}

- We reconstruct thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B}

- We reconstruct thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B}

- We reconstruct thermodynamic quantities up to $\hat{\mu}_{B} \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite (real) μ_{B}

- We also check the results without the inclusion of $\kappa_{4}(T)$ (darker shades)
- Including $\kappa_{4}(T)$ only results in added error, but does not "move" the results
\longrightarrow Good convergence

Strangeness neutrality vs strangeness neutrality

Comparing strangeness neutrality with $\mu_{Q}=0$ (i.e. $n_{Q}=0.5 n_{B}$) against strangeness neutrality with $n_{Q}=0.4 n_{B}$ (heavy-ion)

Formulae with the SB correction

For the expansion coefficient of the baryon density, we get:

$$
\lambda_{2}^{\mathrm{BB}}=\frac{1}{6 T f^{\prime}(T)}\left(c_{4}^{B}(0, T)-\frac{\overline{c_{4}^{B}}(0)}{\overline{c_{2}^{B}}(0)} f(T)\right),
$$

where $f(T)=\frac{d^{2} \log Z}{d \mu_{B}^{2}}\left(\mu_{B}=0, T\right)$. For the expansion coefficient of the strangeness chemical potential we get:

$$
\lambda_{2}^{\mathrm{BS}}=\frac{1}{T f^{\prime}(T)} s_{3}(T)=\frac{1}{6 T f^{\prime}(T)} \frac{d^{3} \hat{\mu}_{S}}{d \hat{\mu}_{B}^{3}}(T),
$$

where $\frac{\hat{\mu}_{S}}{\hat{\mu}_{B}}\left(\hat{\mu}_{B}, T\right)=s_{1}(T)+s_{3}(T) \hat{\mu}_{B}^{2}+s_{5}(T) \hat{\mu}_{B}^{4}+\ldots$ and $f(T)=\lim _{\hat{\mu}_{B} \rightarrow 0} \frac{\hat{\mu}_{S}}{\hat{\mu}_{B}}\left(\mu_{B}, T\right)=-\frac{\chi_{1}^{B S}}{\chi_{2}^{S}}(0, T)$. For the expansion coefficient of the strangeness susceptibility we get:

$$
\lambda_{2}^{\mathrm{SS}}=\frac{1}{2 T f^{\prime}(T)} S_{2, \text { sym }}^{\mathrm{NLO}}(0, T),
$$

where $f(T)=\chi_{2}^{S}\left(\mu_{B}=0, T\right)$.

Formulae with the SB correction

In principle, the λ_{4} coefficients can also be expressed using the Taylor coefficients at $\mu \equiv 0$. For these one needs the Taylor coefficients up to sixth order and the second temperature derivative of the second order coefficients. For the quantities discussed in this paper we have:

$$
\begin{aligned}
\lambda_{4}^{\mathrm{BB}}(T) & =\frac{1}{360 T} \frac{1}{\bar{c}_{2}^{B}(0)^{2} f^{\prime}(T)^{3}} . \\
& {\left[3 \bar{c}_{2}^{B}(0)^{2} c_{6}^{B}(0, T) f^{\prime}(T)^{2}\right.} \\
& -10 \bar{c}_{4}^{B}(0) f^{\prime}(T)^{2}\left(\bar{c}_{2}^{B}(0) c_{4}^{B}(0, T)-\bar{c}_{4}^{B}(0) f(T)\right) \\
& \left.-5 f^{\prime \prime}(T)\left(\bar{c}_{2}^{B}(0) c_{4}^{B}(0, T)-\bar{c}_{4}^{B}(0) f(T)\right)^{2}\right],
\end{aligned}
$$

where $f(T)=\frac{d^{2} \log Z}{d \mu_{B}^{2}}\left(\mu_{B}=0, T\right)$.

Formulae with the SB correction

In principle, the λ_{4} coefficients can also be expressed using the Taylor coefficients at $\mu \equiv 0$. For these one needs the Taylor coefficients up to sixth order and the second temperature derivative of the second order coefficients. For the quantities discussed in this paper we have:

$$
\begin{aligned}
\lambda_{4}^{\mathrm{BS}}(T) & =\frac{s_{5}(T)}{T f^{\prime}(T)}-\frac{s_{3}(T)^{2} f^{\prime \prime}(T)}{2 T f^{\prime}(T)^{3}} \\
& =\frac{1}{120 T f^{\prime}(T)} \frac{d^{5} \hat{\mu}_{S}}{d \hat{\mu}_{B}^{5}}(T)-\frac{f^{\prime \prime}(T)}{72 T f^{\prime}(T)^{3}}\left(\frac{d^{3} \hat{\mu}_{S}}{d \hat{\mu}_{B}^{3}}(T)\right)^{2},
\end{aligned}
$$

where $\frac{\hat{\mu}_{S}}{\hat{\mu}_{B}}\left(\hat{\mu}_{B}, T\right)=s_{1}(T)+s_{3}(T) \hat{\mu}_{B}^{2}+s_{5}(T) \hat{\mu}_{B}^{4}+\ldots$ and $f(T)=\lim _{\hat{\mu}_{B} \rightarrow 0} \frac{\hat{\mu}_{S}}{\hat{\mu}_{B}}\left(\mu_{B}, T\right)=-\frac{\chi_{11}^{B S}}{\chi_{2}^{S}}(0, T)$.

Formulae with the SB correction

In principle, the λ_{4} coefficients can also be expressed using the Taylor coefficients at $\mu \equiv 0$. For these one needs the Taylor coefficients up to sixth order and the second temperature derivative of the second order coefficients. For the quantities discussed in this paper we have:

$$
\begin{aligned}
\lambda_{4}^{\mathrm{SS}}(T) & =\frac{1}{24 T f^{\prime}(T)^{3}}\left(S_{2, \mathrm{sym}}^{\mathrm{NNLO}}(0, T) f^{\prime}(T)^{2}\right. \\
& \left.-3 f^{\prime \prime}(T) S_{2, \mathrm{sym}}^{\mathrm{NLO}}(0, T)^{2}\right),
\end{aligned}
$$

where $f(T)=\chi_{2}^{S}\left(\mu_{B}=0, T\right)$, and

$$
\begin{aligned}
S_{2, \mathrm{sym}}^{\mathrm{NLO}}(0, T) & =\chi_{22}^{B S}(0, T) \\
& +2 s_{1}(T) \chi_{13}^{B S}(0, T)+s_{1}(T)^{2} \chi_{4}^{S}(0, T) \\
S_{2, \mathrm{sym}}^{\mathrm{NNLO}}(0, T) & =\chi_{42}^{B S}(0, T)+4 s_{1}(T) \chi_{33}^{B S}(0, T) \\
& +6 s_{1}(T)^{2} \chi_{24}^{B S}(0, T)+4 s_{1}(T)^{3} \chi_{15}^{B S}(0, T) \\
& +s_{1}(T)^{4} \chi_{6}^{S}(0, T)+24 s_{3}(T) \chi_{13}^{B S}(0, T) \\
& +24 \chi_{4}^{S}(0, T) s_{1}(T) s_{3}(T)
\end{aligned}
$$

In addition, we used the expansion coefficients of $\hat{\mu}_{S}\left(\hat{\mu}_{B}\right)$:

$$
\begin{aligned}
s_{1}= & -\frac{\chi_{11}^{B S}}{\chi_{2}^{S}} \\
s_{3}= & -\frac{1}{6 \chi_{2}^{S}}\left[\chi_{4}^{S} s_{1}^{3}+3 \chi_{13}^{B S} s_{1}^{2}+3 \chi_{22}^{B S} s_{1}+\chi_{31}^{B S}\right] \\
s_{5}= & -\frac{1}{120 \chi_{2}^{S}}\left[+\chi_{6}^{S} s_{1}^{5}+5 \chi_{15}^{B S} s_{1}^{4}+10 \chi_{24}^{B S} s_{1}^{3}\right. \\
& +60 \chi_{4}^{S} s_{1}^{2} s_{3}+120 \chi_{13}^{B S} s_{1} s_{3}+60 \chi_{22}^{B S} s_{3} \\
& \left.+10 \chi_{33}^{B S} s_{1}^{2}+5 \chi_{42}^{B S} s_{1}+\chi_{51}^{B S}\right]
\end{aligned}
$$

The alternative approach at strangeness neutrality

The coefficients for μ_{S} / μ_{B} and χ_{2}^{S} :

Here SB has no effect, though $\lambda_{2}^{B S}$ still goes to zero

Systematics

For an analysis of the systematic uncertainties, we consider:

- 2 x scale settings (w_{0} and f_{π})
- 2 x choices of $\hat{\mu}_{B}$ fitting range ($\hat{\mu}_{B}=i n \pi / 8$ with $n \in\{0,3-5.5\}$ or $n \in\{0,3-6.5\}$)
- 2 x fit functions. Always linear in $1 / N_{\tau}^{2}$, and linear or parabolic in $\hat{\mu}_{B}^{2}$
- 3x splines at $\hat{\mu}_{B}=0$
- 2x splines at $\hat{\mu}_{B} \neq 0$
- Included (or not) $N_{\tau}=8$
for a total of 96 x analyses for each T.
At each temperature, the 96x analyses are combined with uniform weights, if $Q>0.01$.

