

Quarkonia production and elliptic flow in small systems measured with ALICE

Rita Sadek Finot on behalf of the ALICE Collaboration

Subatech, CNRS/IN2P3, Université de Nantes, IMT Atlantique

ubatech

SQM2022, 13th-17th of June 2022, Busan, Republic of Korea

- O <u>Quarkonium production</u>
- <u>Multiplicity-dependent quarkonium production</u>
- o <u>Elliptic flow</u>
- $O J/\psi$ pair production

<u>Constrain theoretical models:</u>

<u>Color Evaporation Model [1]:</u>

D pQCD Statistical approach

- Describes well quarkonia production
- No distinction between color singlet or octet mechanisms

NRQCD [2]:

D NRQCD formalism

□ Predicts well cross sections

• Beauty production via non-prompt charmonia:

<u>Fixed Order Next-to-Leading-Logarithm [3]:</u> **D** pQCD for heavy quark production \Box Used for non-prompt J/ ψ (ψ (2S)) production, predicts well data

[1]: Phys. Lett. B, 67:217–221, 1977 [2]: Phys. Rev. D51:1125-1171,1995 [3]: JHEP 9805:007,1998

<u>Shed light on Multiple Parton Interactions (MPI):</u>

D Multiplicity dependent measurements

 \rightarrow Quarkonia correlations with charged-particle multiplicity / flow

□ Heavy quarks created in subsequent hard-scattering processes, in early stage of collision

Investigate collectivity in small systems

 \Box Study of J/ ψ elliptic flow at high collision energy and multiplicity

<u>Reference for measurements in p—Pb</u> and Pb—Pb collisions

A Large Ion Collider Experiment

Time Projection Chamber: Charged particle tracking Particle identification

Inner Tracking System: Particle tracking Vertex reconstruction

V0:

Trigger detector Event characterization Background rejection

\boxed{M} J/ ψ production measurement in pp collisions:

Muonic decay channel: $J/\psi \rightarrow \mu^+\mu^-$ Forward rapidity: 2.5 < y < 4Down to $p_{\rm T} = 0 \; {\rm GeV}/c$ $\sqrt{s} = 5.02, 7, 8, \text{ and } 13 \text{ TeV}$

*****Cross section measurements vs $p_{\rm T}$:

Agreement between data and NRQCD + FONLL model Cross section increases with increasing collision energy

$\mathbf{V} \mathbf{J} \mathbf{\psi} \mathbf{p} \mathbf{roduction}$ measurement in pp collisions:

Muonic decay channel: $J/\psi \rightarrow \mu^+\mu^-$ Forward rapidity: 2.5 < y < 4Down to $p_{\rm T} = 0 \; {\rm GeV}/c$ $\sqrt{s} = 5.02, 7, 8, \text{ and } 13 \text{ TeV}$

*****Cross section measurements vs $p_{\rm T}$:

Agreement between data and NRQCD + FONLL model Cross section increases with increasing collision energy

*****Ratio vs $p_{\rm T}$:

Agreement for 8-to-13 TeV and 5-to-13 TeV ratios 7-to-13 TeV ratio slightly overestimated by model

Hardening of $p_{\rm T}$ spectra at 13 TeV compared to lower energies: Predicted increase of prompt J/ ψ mean $p_{\rm T}$ with energy Increase of non-prompt J/ ψ contribution at high $p_{\rm T}$ (FONLL predictions)

$\mathbf{V} \mathbf{J} \mathbf{\psi} \mathbf{p} \mathbf{roduction}$ measurement in pp collisions:

Muonic decay channel: $J/\psi \rightarrow \mu^+\mu^-$ Forward rapidity: 2.5 < y < 4Down to $p_{\rm T} = 0 \; {\rm GeV}/c$ $\sqrt{s} = 5.02, 7, 8, \text{ and } 13 \text{ TeV}$

*****Cross section measurements vs $p_{\rm T}$:

Agreement between data and NRQCD + FONLL model Cross section increases with increasing collision energy

*****Ratio vs $p_{\rm T}$:

Agreement for 8-to-13 TeV and 5-to-13 TeV ratios 7-to-13 TeV ratio slightly overestimated by model

Hardening of $p_{\rm T}$ spectra at 13 TeV compared to lower energies: Predicted increase of prompt J/ ψ mean $p_{\rm T}$ with energy Increase of non-prompt J/ ψ contribution at high $p_{\rm T}$ (FONLL predictions)

\boxed{M} J/ ψ production measurement in pp collisions:

Electron decay channel: $J/\psi \rightarrow e^+e^-$ Midrapidity: |y| < 0.9Down to $p_T = 1$ GeV/c for $\sqrt{s} = 13$ TeV Down to $p_T = 2$ GeV/c for $\sqrt{s} = 5.02$ TeV

*****Cross section measurements vs p_{T} :

<u>Prompt J/ψ</u>: ICEM + NRQCD based models: in agreement with data NRQCD Lipatov calculations: slightly overestimate data at low $p_{\rm T}$

<u>Non-prompt J/ ψ :</u> In agreement with FONLL model

 $\frac{\text{Fraction of the non-prompt J/\psi:}}{f_B^{visible,\sqrt{s}=13 \text{ TeV}}}(p_{\text{T}} > 1 \text{GeV/c}, |y| < 0.9) = 0.185 \pm 0.015 \text{(stat.)} \pm 0.014 \text{(syst.)}$

\boxed{M} J/ ψ production measurement in pp collisions:

Electron decay channel: $J/\psi \rightarrow e^+e^-$ Midrapidity: |y| < 0.9Down to $p_T = 1$ GeV/c for $\sqrt{s} = 13$ TeV Down to $p_T = 2$ GeV/c for $\sqrt{s} = 5.02$ TeV

*****Cross section measurements vs $p_{\rm T}$:

<u>Prompt J/ψ</u>: ICEM + NRQCD based models: in agreement with data NRQCD Lipatov calculations: slightly overestimate data at low $p_{\rm T}$

<u>Non-prompt J/ ψ :</u> In agreement with FONLL model

 $\frac{\text{Fraction of the non-prompt J/\psi:}}{f_B^{visible,\sqrt{s}=5.02 \text{ TeV}}}(p_{\text{T}} > 2\text{GeV}/c, |y| < 0.9) = 0.157 \pm 0.023(\text{stat.}) \pm 0.016(\text{syst.})$

Comparison with CMS and ATLAS data, consistency is observed in the common $p_{
m T}$ region

$\mathbf{V} \mathbf{J} \mathbf{\psi} \mathbf{p} \mathbf{roduction}$ measurement in pp collisions:

Electron decay channel: $J/\psi \rightarrow e^+e^-$ Midrapidity: |y| < 0.9Down to $p_{\rm T}$ = 1 GeV/c for \sqrt{s} = 13 TeV Down to $p_{\rm T}$ = 2 GeV/c for \sqrt{s} = 5.02 TeV

*****Cross section measurements vs $p_{\rm T}$:

<u>Prompt J/ψ:</u> ICEM + NRQCD based models: in agreement with data NRQCD Lipatov calculations: slightly overestimate data at low $p_{\rm T}$

<u>Non-prompt J/ψ:</u> In agreement with FONLL model

<u>Fraction of the non-prompt J/ ψ :</u>

$\mathbf{V}(2S)$ production measurement in pp collisions:

Muonic decay channel: $\psi(2S) \rightarrow \mu^+ \mu^-$ Forward rapidity: 2.5 < y < 4Down to $p_{\rm T} = 0 \ {\rm GeV}/c$ $\sqrt{s} = 5.02, 7, 8, \text{ and } 13 \text{ TeV}$

*****Cross section measurements vs $p_{\rm T}$:

Agreement between data and NRQCD + FONLL model Increase of $\psi(2S)$ cross section with increasing collision energy

$\mathbf{V}(2S)$ production measurement in pp collisions:

Muonic decay channel: $\psi(2S) \rightarrow \mu^+ \mu^-$ Forward rapidity: 2.5 < y < 4Down to $p_{\rm T} = 0 \; {\rm GeV}/c$ $\sqrt{s} = 5.02, 7, 8, \text{ and } 13 \text{ TeV}$

*****Cross section measurements vs p_{T} :

Agreement between data and NRQCD + FONLL model Increase of $\psi(2S)$ cross section with increasing collision energy

*****Cross section ratio of $\psi(2S)$ -to-J/ ψ vs p_T :

Ratio increases with increasing $p_{\rm T}$, no energy dependence

$\mathbf{V}(2S)$ production measurement in pp collisions:

Muonic decay channel: $\psi(2S) \rightarrow \mu^+ \mu^-$ Forward rapidity: 2.5 < y < 4Down to $p_{\rm T} = 0 \; {\rm GeV}/c$ $\sqrt{s} = 5.02, 7, 8, \text{ and } 13 \text{ TeV}$

*****Cross section measurements vs $p_{\rm T}$:

Agreement between data and NRQCD + FONLL model Increase of $\psi(2S)$ cross section with increasing collision energy

*****Cross section ratio of $\psi(2S)$ -to-J/ ψ vs p_T :

Ratio increases with increasing $p_{\rm T}$, no energy dependence

 $\psi(2S)$ production, as J/ ψ , increases with collision energy - what about multiplicity-dependent production?

$\mathbf{V} \mathbf{J} \mathbf{\psi} \mathbf{production measurement:}$

Electron decay channel: $J/\psi \rightarrow e^+e^-$ Midrapidity: |y| < 0.9Muonic decay channel: $J/\psi \rightarrow \mu^+\mu^-$ Forward rapidity: 2.5 < y < 4With $\sqrt{s} = 5.02$ TeV, and 13 TeV

*****Production measurement vs charged particle multiplicity:

Midrapidity region: stronger than linear increase of the yield with the multiplicity Forward rapidity region: trend compatible with linear dependence on multiplicity, independent of the center-of-mass energy

$\mathbf{V} \mathbf{J} \mathbf{\psi} \mathbf{production measurement:}$

Electron decay channel: $J/\psi \rightarrow e^+e^-$ Midrapidity: |y| < 0.9Muonic decay channel: $J/\psi \rightarrow \mu^+\mu^-$ Forward rapidity: 2.5 < y < 4With $\sqrt{s} = 5.02$ TeV, and 13 TeV

*****Production measurement vs charged particle multiplicity: Midrapidity region: stronger than linear increase of the yield with the multiplicity

*****Comparison with models:

CPP, CGC, and 3-Pomeron models in agreement with the inclusive midrapidity data

<u>Faster-than-linear increase predicted by different models due to different mechanisms:</u> Color string reconnection, gluon saturation, coherent particle production, 3-gluon fusion in gluon ladders/Pomerons

- Forward rapidity region: trend compatible with linear dependence on multiplicity, independent of the center-of-mass energy

$\mathbf{V} \mathbf{J} \mathbf{\psi} \mathbf{production measurement:}$

Electron decay channel: $J/\psi \rightarrow e^+e^-$ Midrapidity: |y| < 0.9Muonic decay channel: $J/\psi \rightarrow \mu^+\mu^-$ Forward rapidity: 2.5 < y < 4With $\sqrt{s} = 5.02$ TeV, and 13 TeV

*****Production measurement vs charged particle multiplicity: Midrapidity region: stronger than linear increase of the yield with the multiplicity Forward rapidity region: trend compatible with linear dependence on multiplicity, independent of the center-of-mass energy

*****Comparison with models:

CPP, CGC, and 3-Pomeron models in agreement with the inclusive midrapidity data

<u>Faster-than-linear increase predicted by different models due to different mechanisms:</u> Color string reconnection, gluon saturation, coherent particle production, 3-gluon fusion in gluon ladders/Pomerons

What about the excited charmonium states?

Rita Sadek Finot

Relative $\psi(2S)$ -to-J/ ψ production vs multiplicity

 $\psi(2S)$ production measurement at forward y as a function of charged particle multiplicity (mid-y) in pp: <u>Conclusion</u>: production at forward rapidity independent of the charmonium state + collision energy

ψ(2S) yield: PYTHIA, with/without color reconnections, in agreement with data at low multiplicity, tension at high multiplicity $\psi(2S)$ -to-J/ ψ ratio: tension at low multiplicity between data and PYTHIA \rightarrow different event activity bias to explain the discrepancy?

Linear correlation of $\psi(2S)$ production with charged particle multiplicity, self-normalized $\psi(2S)/J/\psi$ compatible with unity

Relative $\psi(2S)$ -to-J/ ψ production vs multiplicity

 $\psi(2S)$ production measurement at forward y as a function of charged particle multiplicity (mid-y) in pp: Linear correlation of $\psi(2S)$ production with charged particle multiplicity, self-normalized $\psi(2S)/J/\psi$ compatible with unity <u>Conclusion</u>: production at forward rapidity independent of the charmonium state + collision energy

 $\psi(2S)$ yield: PYTHIA, with/without color reconnections, in agreement with data at low multiplicity, tension at high multiplicity $\psi(2S)$ -to-J/ ψ ratio: tension at low multiplicity between data and PYTHIA \rightarrow different event activity bias to explain the discrepancy? Collectivity at high multiplicity in small system?

J/ψ elliptic flow in pp collisions

<u>Market The elliptic flow coefficient for small system:</u> $v_2(p_{\rm T}, y) = \langle \cos(2\Delta\phi) \rangle$

*****J/ ψ elliptic flow measurement vs $p_{\rm T}$: First results in pp down to 0 GeV/cNo significant deviation of $J/\psi v_2$ from zero \rightarrow No collective behavior observed in pp collisions at high multiplicity for the J/ ψ

Comparison between pp, p—Pb, and Pb—Pb collisions: for the latter, presence of collective behavior, with a clear difference w.r.t pp data ($v_{2,J/\psi}^{pp} < v_{2,J/\psi}^{pPb} < v_{2,J/\psi}^{PbPb}$) Phys. Lett. B 780 (2018) 7-20

*****Quarkonium production in pp collisions:

Well described by models J/ψ and $\psi(2S)$ cross section increases with energy $\psi(2S)$ -to-J/ ψ ratio: increases with increasing $p_{\rm T}$ + independent of energy

***** Measurements of multiplicity dependent charmonium production in pp collisions: Different behavior versus charged particle multiplicity for the J/ ψ produced at mid and forward rapidity Same trend versus multiplicity for the J/ ψ and ψ (2S) at forward rapidity

* First elliptic flow measurements for J/ψ in pp collisions at 13 TeV: No evidence for positive J/ ψ elliptic flow in high multiplicity events

***** First J/ψ pair production measurements in pp collisions: First results of double J/ ψ cross section: in agreement with LHCb

Perspective for Run 3:

Larger multiplicity can be achieved with increased statistics Better S/B for quarkonium measurements Separation of the prompt and non-prompt J/ ψ at forward rapidity thanks to the Muon Forward Tracker Improved spatial resolution at midrapidity thanks to the upgraded ITS

CERN Yellow Rep.Monogr. 7 (2019) 1159-1410

