Measurements of collectivity in the forward region at LHCb

SOM20,22
 The 20th International Conference on Strangeness in Quark Matter

 13-17 June 2022 Busan, Republic of KoreaImanol Corredoira, on behalf of the LHCb collaboration - icorredo@cern.ch

DE MAEZTU
IGFAE

UK Xacobeo 21.22

Instituto Galego de Física de Altas Enerxías galicio

Outline

I. Introduction: Two-particle correlations and collectivity
2. LHCb capabilities
3. LHCb measurements:
3.I. Two-particle angular correlations in pPb at $\sqrt{s_{N N}}=5 \mathrm{TeV}$
3.2. Centrality dependence of two-particle angular correlations in PbPb at $\sqrt{s_{N N}}=5 \mathrm{TeV}$ 3.3. Multiplicity dependence of two-particle angular correlations in PPb at $\sqrt{s_{N N}}=8 \mathrm{TeV}$
3.4. Study of the Bose-Einstein correlations of identical pions in pPb at $\sqrt{s_{N N}}=5 \mathrm{TeV}$

Introduction

Initial state: Energy density spatial asymmetry in non-central ion collisions
$0 \mathrm{fm} / \mathrm{c}$

Macroscopically described by Energy-Momentum Tensor

Momentum and position asymmetry in the final state

Final state

Access to initial state properties

Introduction

Extracting Energy-Momentum tensor components from collective flow
Measuring it with Fourier decomposition of particle correlations

Mainly Gluons

$$
\begin{gathered}
\left\langle T^{x y}(x, t) T^{x y}(0,0)\right\rangle \\
\left\langle T_{i}^{i}(x, t) T_{i}^{i}(0,0)\right\rangle
\end{gathered}
$$

Shear viscosity η : anisotropic collective flow Experimentally
Bulk viscosity ζ : transverse collective flow

Also in small systems? Nat. Phys. 15, 214-220 (2019)

Elliptic flow v_{2}

Direct flow v_{1}
Only at forward rapidity

Triangular flow v_{3}

About LHCb

LHCb experiment

- Single-arm fully instrumented spectrometer in $\eta \in[2,5]$
- $\mathrm{PP}, \mathrm{pPb}, \mathrm{PbPb}$ and fixed target modes
- Momentum resolution:
$\Delta p / p=0.5-1 \%, p \in[2,200] \mathrm{GeV} / \mathrm{c}$
- Primary vertex resolution $: \in[10,35] \mu \mathrm{m}$
- ECAL energy resolution: arXiv:2008.II556
$13.5 \% / \sqrt{E / G e V} \oplus 5.2 \% \oplus(0.32 \mathrm{GeV}) / E$

JINST 3 (2008) S08005

Accessing low-x phenomena

- Q^{2} : exchanged moments between interacting partons
- x : momentum fraction of the parton with respect to nucleus

$$
Q^{2} \sim m^{2}+p_{T}^{2}, \quad x \sim \frac{Q}{\sqrt{s_{N N}}} e^{-\eta}
$$

- LHCb coverage $\left\lvert\, \begin{aligned} & \bullet \text { Forward, } 10^{-6} \leq x \leq 10^{-4} \\ & \bullet \text { Backward, } 10^{-3} \leq x \leq 10^{-1}\end{aligned}\right.$

LHCb particular capabilities

- Charged and neutral hadron production at small-x
- Capability to study one system in a wide range of x values:
- Forward/Backward comparison
- Possible access to the saturation region \rightarrow Non-linear dynamics

Two-particle angular correlations

Correlation function: $\frac{1}{N_{\text {trig }}} \frac{d^{2} N_{\text {pairs }}}{d \Delta \phi d \Delta \eta}=B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$
Where $\left\{\begin{array}{l}S(\Delta \eta, \Delta \phi)=\frac{1}{N_{\text {trig }}} \frac{d N_{\text {pairs }}^{\text {same }}}{d \Delta \phi} \rightarrow \text { Correlated pairs from the same events } \\ B(\Delta \eta, \Delta \phi)=\frac{1}{N_{\text {pairs }}(\Delta \phi=0)} \frac{p_{\mathrm{T}}^{\text {trigg }}}{\text { Trigge }} \\ d \Delta \phi\end{array}\right.$

Background mixed events should have similar features with respect to signal

Fourier expansion
$\frac{d N_{\text {pairs }}}{d \Delta \phi}=A\left[1+2 \sum_{n=1}^{3}\left\langle V_{n}\right\rangle \cos (n \cdot \Delta \phi)\right]$ Fitting we extract $\rightarrow v_{n}\left(p_{\mathrm{T}}^{\text {assoc }}\right)=\frac{V_{n}\left(p_{\mathrm{T}}^{\text {assoc }}, p_{\mathrm{T}}^{\text {trigg }}\right)}{\sqrt{V_{n}\left(p_{\mathrm{T}}^{\text {trigg }}, p_{\mathrm{T}}^{\text {trigg }}\right)}}\left\{\begin{array}{l}v_{1} \rightarrow \text { Directed flow } \\ v_{2} \rightarrow \text { Eliptic flow } \\ v_{3} \rightarrow \text { Triangular flow }\end{array}\right.$

Two-particle angular correlations in pPb at 5 TeV

PLB.2016.09.064

- Correlation function: $\frac{1}{N_{\text {trig }}} \frac{d^{2} N_{\text {pair }}}{d \Delta \eta d \Delta \phi}=B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$
- $\mathscr{L}=95 \mu \mathrm{~b}^{-1}$

Activity class definition based on percentiles of $N_{V E L O}^{h i t}$ distribution*

*VErtex LOcator (VELO): LHCb Vertex detector

Two-particle angular correlations in pPb at 5 TeV

Quantitative analysis:

- I-dimensional yield: $Y(\Delta \phi)=\frac{1}{N_{\text {trig }}} \frac{d N_{\text {pair }}}{d \Delta \phi}=B(0,0) \frac{S(\Delta \phi)}{B(\Delta \phi)}$
- Integrating over $2<|\Delta \eta|<2.8$ to avoid short range (jet etc) contributions
- Using zero-yield-at-minimum (ZYAM) condition to remove flat pedestal $\rightarrow C_{Z Y A M}$ from a second-order polynomial fit at $\Delta \phi_{\text {min }}$

Two-particle angular correlations in pPb at 5 TeV

Ongoing analyses

Charged hadrons v_{n} in PbPb at $\sqrt{s_{N N}}=5 \mathrm{TeV}$

- Charge hadron v_{n} in PbPb at 5 TeV
- Centrality determination using calorimeter energy and MC Glauber
- Study direct flow in forward region
- $\mathscr{L}=228 \mu \mathrm{~b}^{-1}$

Charged hadrons and charm v_{n} in pPb at $\sqrt{s_{N N}}=8 \mathrm{TeV}$

- Study initial effects at low-x
- $\mathscr{L} \sim 15 \mathrm{nb}^{-1}$
- Multiplicity dependent measurement
- Multiplicity correction with response matrix
- Precise charmed mesons reconstruction \rightarrow High statistics

Bose-Einstein correlations of identical pions in $\mathbf{~ p P b}$

- Bose-Einstein correlations (BEC) \rightarrow Enhanced production of identical particles with small momentum
- Measure scales that are referred to as lengths of homogeneity \rightarrow Related with the geometrical size of the particle-emitting source
- Correlation radius scales universally with the cube root of the charge-particle multiplicity

Data sample: $2013 \mathrm{pPb} / \mathrm{Pbp}$ data at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$
I. Two-particle correlation function

$C_{2}(Q)=\left(\frac{N^{r e f}}{N^{s i g}}\right)\left(\frac{d N^{s i g}(Q) / d Q}{d N^{r e f}(Q) / d Q}\right)$ where $Q \equiv \sqrt{-q^{2}}=\sqrt{-\left(k_{1}-k_{2}\right)^{2}}$
Where $\left\{\begin{aligned} N^{\text {sig }} & \rightarrow \text { Sample with BEC. Same-sign charged particles } \\ N^{r e f} & \rightarrow \text { Sample free from BEC. Event-mixing method }\end{aligned}\right.$
2. Levy-type parametrization: $C_{2}(Q)=1+e^{-|R Q|} \rightarrow$ Correlation radius, R

VErtex LOcator activity based classification

LHCb at Run3

New RICH optics and photodetectors
Up to 30\% centrality in PbPb

Summary

- Two-particle angular correlations \rightarrow Initial state properties
- LHCb can
$\left\{\right.$ Access low-x physics in PPb and $\mathrm{PbPb}, 10^{-6}<x<10^{-1}$
Measure two-particle correlations in a complementary pseudorapidy region to other experiments, $2.0<\eta<4.9$

Ongoing analysis:

- Centrality dependence of two-particle angular correlations in PbPb at $\sqrt{s_{N N}}=5 \mathrm{TeV}$
- Multiplicity dependence of two-particle angular correlations in pPb at $\sqrt{s_{N N}}=8 \mathrm{TeV}$
- Study of the Bose-Einstein correlations of identical pions in pPb at $\sqrt{s_{N N}}=5 \mathrm{TeV}$

More LHCb results will come in the future \rightarrow Stay tuned

SOM2の22
The 20th International Conference on Strangeness in Quark Matter
13-17 June 2022 Busan, Republic of Korea

icorredo@cern.ch

Backup: Event activity classification

- Multiplicity of reconstructed VELO tracks assigned to a PV for the 2011 no-bias sample.
- Different colours indicate three activity classes defined as fractions of the full distribution.
- The minimum value of the track multiplicity to accept reconstructed PV is five

