Calculating QCD Phase Diagram Trajectories of Nuclear Collisions using a Semi-analytical Model

Todd Mendenhall* and Zi-Wei Lin

East Carolina University

*Speaker

Outline

- Introduction
- Results
- Densities
- Quantum ideal gas EOS
- Boltzmann ideal gas EOS
- Lattice EOS
- Transverse expansion
- Summary

Density calculations - Bjorken $\varepsilon(t)$ formula

- Narrow volume at time t
- Formation time
- Rapidity $y \sim 0$

$$
\epsilon_{B j}\left(t \geq \tau_{F}\right)=\frac{1}{A_{T} t} \frac{d E_{T}}{d y}
$$

$$
A_{T}=\pi R_{A}^{2}
$$

Central Au+Au collisions

J. D. Bjorken, Phys. Rev. D27, 140 (1983).

Density calculations - finite thickness

- Integrate transverse mass rapidity density over the production region at time t

$$
\frac{d^{3} m_{T}}{d y d z_{0} d x}
$$

- Factorize the spatial and temporal dependence from the rapidity dependence
- Assume uniform distribution in $\left(Z_{0}, x\right)$

$$
z_{F}(x)=\sqrt{(t-x)^{2}-\tau_{F}^{2}}
$$

Energy density

- Single Gaussian, (y=0 from PHENIX)
- Double Gaussian, (y=0 from proton and net-proton dN/dy)
- Net-baryon number conservation

$$
\epsilon(t)=\frac{1}{A_{T}} \iint_{S(t)} \frac{d z_{0} d x}{t-x} \frac{d^{3} m_{T}}{d y d z_{0} d x} \cosh ^{3} y
$$

- Total energy conservation

Net conserved-charge densities

- No net strangeness

$$
n_{B}(t)=\frac{1}{A_{T}} \iint_{S(t)} \frac{d z_{0} d x}{t-x} \frac{d^{3} N_{B-\bar{B}}}{d y d z_{0} d x} \cosh ^{2} y
$$

$$
n_{Q}(t)=n_{B}(t) \frac{Z}{A}
$$

$$
n_{S}(t)=0
$$

Extracting ($(T-\mu)$ from ($\varepsilon-n$)

- First, using ideal gas EOS for massless QGP - (u, d, s)
- Quantum \& Boltzmann statistics
- Later using a lattice-based EOS
- Quark-antiquark pair production $\mu_{q}+\mu_{\bar{q}}=0$
- Chemical potential of parton $i \longrightarrow \mu_{i}=B_{i} \mu_{\mathrm{B}}+Q_{i} \mu_{\mathrm{Q}}+S_{i} \mu_{\mathrm{S}}$
- Strangeness neutrality $\longrightarrow \mu_{\mathrm{B}}-\mu_{\mathrm{Q}}-3 \mu_{\mathrm{S}}=0$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{S}}^{\text {quantum }}=-\frac{\mu_{\mathrm{B}}-\mu_{\mathrm{Q}}-3 \mu_{\mathrm{S}}}{3} T^{2}-\frac{\left(\mu_{\mathrm{B}}-\mu_{\mathrm{Q}}-3 \mu_{\mathrm{S}}\right)^{3}}{27 \pi^{2}} \\
& \mathrm{n}_{\mathrm{S}}^{\text {Boltzmann }}=-\frac{12}{\pi^{2}} T^{3} \sinh \left(\frac{\mu_{\mathrm{B}}-\mu_{\mathrm{Q}}-3 \mu_{\mathrm{S}}}{3 T}\right)
\end{aligned}
$$

T. M. and Z.-W. Lin, arXiv:2111.13932 [nucl-th].

$$
\mu_{\mathrm{B}}(\mathrm{MeV})
$$

Lattice EOS

J. Noronha-Hostler, P. Parotto, C. Ratti, and J. M. Stafford Phys. Rev. C100, 064910 (2019).

$$
\frac{p\left(T, \mu_{\mathrm{B}}, \mu_{\mathrm{Q}}, \mu_{\mathrm{s}}\right)}{T^{4}}=\sum_{i, j, k} \frac{1}{i!j!k!} \chi_{i j k}^{B Q S}\left(\frac{\mu_{\mathrm{B}}}{T}\right)^{i}\left(\frac{\mu_{\mathrm{Q}}}{T}\right)^{j}\left(\frac{\mu_{\mathrm{s}}}{T}\right)^{k}
$$

$$
\chi_{i j k}^{B Q S}=\left.\frac{\partial^{i+j+k}\left(p / T^{4}\right)}{\partial\left(\mu_{\mathrm{B}} / T\right)^{i} \partial\left(\mu_{\mathrm{Q}} / T\right)^{j} \partial\left(\mu_{\mathrm{S}} / T\right)^{k}}\right|_{\mu_{\mathrm{B}}, \mu_{\mathrm{Q}}, \mu_{\mathrm{S}}=0}
$$

$$
\frac{\epsilon}{T^{4}}=\frac{s}{T^{3}}-\frac{p}{T^{4}}+\frac{\mu_{\mathrm{B}}}{T} \frac{n_{\mathrm{B}}}{T^{3}}+\frac{\mu_{\mathrm{Q}}}{T} \frac{n_{\mathrm{Q}}}{T^{3}}+\frac{\mu_{\mathrm{s}}}{T} \frac{n_{\mathrm{s}}}{T^{3}}
$$

$$
\frac{n_{\mathrm{B}}}{T^{3}}=\left.\frac{1}{T^{3}} \frac{\partial p}{\partial \mu_{\mathrm{B}}}\right|_{T, \mu_{\mathrm{Q}}, \mu_{\mathrm{S}}} \quad n_{\mathrm{Q}}=n_{\mathrm{B}} Z / A, n_{\mathrm{S}}=0
$$

Lattice EOS with densities from our semi analytical model agree with RHIC chemical freezeout data

12
T. M. and Z.-W. Lin, arXiv:2111.13932 [nucl-th]. (to be updated)

Transverse Expansion

$\mathrm{R}_{\mathrm{T}}(t)=R_{A}+\beta_{\mathrm{T}}(t)\left(t-t_{1}\right)$
$\beta_{\mathrm{T}}(t)= \begin{cases}0, & \text { for } 0 \leq t<t_{1} \\ \frac{1-e^{-\left(t-t_{1}\right) / a}}{1-e^{-\left(t_{k}-t_{1}\right) / a}} \beta_{\mathrm{T}, \mathrm{f}}, & \text { for } t_{1} \leq t<t_{k} \\ \beta_{\mathrm{T}, \mathrm{f}}, & \text { for } t_{k} \leq t\end{cases}$

Transverse expansion has small effect on the endpoint of trajectories

There is a weak dependence on $\mathrm{t}_{\mathrm{k}}-\mathrm{t}_{1}$

QGP Lifetime

> | No transverse expansion | Transverse expansion | |
| :---: | :---: | :---: |
| --- | $\tau_{\mathrm{F}}=0.1 \mathrm{fm} / c$ | - |
| --- | $\tau_{\mathrm{F}}=0.9 \mathrm{fm} / c$ | - |
| $\tau_{\mathrm{F}}=0.1 \mathrm{fm} / c$ | | |
| $\tau_{\mathrm{F}}=0.9 \mathrm{fm} / c$ | | |

Transverse expansion has an effect of almost a factor ~ 2 over all energies.

Summary

- We have developed a semi-analytical model to calculate the trajectories of $\mathrm{Au}+\mathrm{Au}$ collisions in the QCD phase diagram.
- We have made a web application to calculate trajectories using quantum or Boltzmann ideal gas equations of state: http://myweb.ecu.edu/linz/densities/
- The finite thickness and EOS have large effects on the calculated trajectories.
- Transverse expansion has a small effect on the trajectory path, but a large effect on the QGP lifetime.
- The lattice EOS with our semi-analytical densities agrees with the RHIC chemical freezeout data.

