

Elliptic flow of strange and multi-strange hadrons in isobar collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Priyanshi Sinha

(for the STAR Collaboration)

Indian Institute of Science Education and Research (IISER) Tirupati, India

<u>Outline</u>

- Introduction
- STAR experiment at RHIC
- Results
 - Elliptic flow of strange and multi-strange hadrons
 - \circ System size dependence
- Summary

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

Introduction: Elliptic flow

Motivation

Proton

- Study of elliptic flow in isobar collisions \geq may help in understanding the deformation of the colliding nuclei
- Elliptic flow arises from the initial \succ geometrical anisotropy of overlap region For identified particles, check if:

 $\frac{(\mathbf{v}_2)_{\mathrm{Ru}+\mathrm{Ru}}}{=1}$ $\overline{(v_2)}_{Zr+Zr}$

 \succ System size dependence of the azimuthal anisotropy

G. Giacalone, J. Jia, and V. Somà, Phys. Rev. C 104 (2021) L041903

STAR, Phys. Rev. C 105 (2022) 14901

STAR experiment

Dataset: Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV (2018)

• Approximately 1.3 B events have been analysed

Priyanshi Sinha

➢ Event plane angle is defined as :

$$\Psi_{2} = \left[\tan^{-1} \left(\frac{\sum_{i} w_{i} \sin(2\phi_{i})}{\sum_{i} w_{i} \cos(2\phi_{i})} \right) \right] / 2$$

- > Event plane has been calculated in two different windows 'a' (-1.0 < η < -0.05) and 'b' (0.05 < η < 1.0)
- ➤ The event plane resolution is :

$$R = \sqrt{\cos 2(\Psi_2^a - \Psi_2^b)}$$

 \succ Resolution correction is applied to obtain the final v₂

Particle identification

 \succ K_s⁰, ϕ , Λ , and Ξ have been reconstructed from their decay products

- Signal reconstruction using invariant mass technique : $m_{inv} = \sqrt{(E_1 + E_2)^2 (\vec{p_1} + \vec{p_2})^2}$
- > Background reconstruction using various methods: Event-mixing method for ϕ -mesons, rotation method for K_s^0 , Λ , and Ξ

Flow analysis method

ϕ - Ψ_2 binning method:

> Particle raw-yield as a function of ϕ - Ψ_2 is fitted with a function for different p_T ranges to extract v_2 coefficients

Results: Elliptic flow

- \succ v₂ shows a mass ordering at low p_T in isobar collisions
- > Baryon-meson splitting at intermediate p_T region (> 2 GeV/c)
- \succ v₂ values have similar p_T dependence in Ru+Ru and Zr+Zr collisions for 0-80% centrality

- > Strong centrality dependence is observed for v_2 of K_s^0 , Λ , and $\overline{\Lambda}$, in both Ru+Ru and Zr+Zr collisions
- \succ v₂(p_T) increases from central to peripheral collisions

....

STAR

Centrality dependence of v₂(p_T)

- > Strong centrality dependence is observed for v_2 of ϕ , Ξ^- , and $\overline{\Xi}^+$ in both Ru+Ru and Zr+Zr collisions
- \succ v₂(p_T) increases from central to peripheral collisions

STAR

 n_a = Number of constituent quarks, 3 for baryons and 2 for mesons ; Transverse kinetic energy (KE_T) = $m_T - m_0$

> NCQ scaling holds good to 10% within uncertainties in both Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV

 \rightarrow Indicative of partonic collectivity in the system

v₂ vs centrality

- p_T-integrated elliptic flow increases from central to peripheral collisions
- Ratio of v₂ between Ru+Ru and Zr+Zr collisions at √s_{NN} = 200 GeV for K_s⁰, ∧ and Ā seems to deviate from unity by ~2% at central and mid-central collisions
 → May indicate larger nuclear deformity in Ru than in Zr nucleus

System size dependence (strangeness)

*Errors bars denote the combined statistical and systematic uncertainties

Fitting function :
$$f_{v_2}(n) = \frac{an}{1 + e^{-(p_T/n - b)/c}} - dn$$

n: number of quarks; a, b, c, d: free parameters

- ν₂ of K_s⁰, Λ, and Λ in isobar collisions is smaller than in
 ¹⁹⁷Au+¹⁹⁷Au and ²³⁸U+²³⁸U collisions at higher p_T
- v₂ in isobar collisions is higher as compared to
 ⁶³Cu+⁶³Cu collisions at higher p_T

STAR, Phys. Rev. C 77 (2008) 054901; Phys. Rev. C 81 (2010) 044902

STAR

SQM2922 The 2014 International Conference on Strangeness (multi-strangeness) **STAR**

n: *number* of *quarks*; *a*, *b*, *c*, *d*: free parameters

 \succ v₂ of ϕ and Ξ is similar in the measured p_T range for different collision systems within uncertainties

Summary

- Elliptic flow of K_s^0 , Λ , $\overline{\Lambda}$, ϕ , and Ξ has been measured using event plane method for Ru+Ru and Zr+Zr collisions at
 - √s_{NN} = 200 GeV
- > Strong centrality dependence of v_2 for all particles has been observed
- > NCQ scaling holds good to 10% for all particles in all centralities for the isobar collisions
- > Elliptic flow ratio for Ru+Ru over Zr+Zr seems to show a deviation of nearly 2% in central and mid-central collisions
 - \rightarrow May indicate higher deformation in Ru than in Zr nuclei
- \succ v₂ of strange hadrons in isobar collisions
 - > At high p_T : Smaller compared to Au+Au and U+U collisions, and larger compared to Cu+Cu collisions
 - ➤ At low p_T: Similar for all collision systems studied

Thank you for your attention!

Priyanshi Sinha

System size dependence (strangeness)

 \succ v₂ of K_s⁰, Λ , and $\overline{\Lambda}$ in isobar collisions is smaller than in ¹⁹⁷Au+¹⁹⁷Au and ²³⁸U+²³⁸U collisions at higher p_T

 \succ v₂ in isobar collisions is larger as compared to ⁶³Cu+⁶³Cu collisions at higher p_T

STAR, Phys. Rev. C 77 (2008) 054901; Phys. Rev. C 81 (2010) 044902; Phys. Rev. C 103 (2021) 064907

STAR, Phys. Rev. C 105 (2022) 14901

- \succ p_T-integrated elliptic flow increases from central to peripheral collisions
- > Ratio of v₂ between Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV for charged hadrons are comparable within the current uncertainties