

June 13 – 17, 2022 Busan, Republic of Korea

Quark susceptibilities, transport properties and heavy quark production in an extended Quasi-Particle Model with $N_f = 2 + 1 + 1$ flavors

Maria Lucia Sambataro

Dipartimento di Fisica e Astronomia 'E. Majorana'

Università degli Studi di Catania, INFN-LNS

In collaboration with: S. Plumari, V. Minissale, V. Greco

Outline

✤ Basic scales of heavy quarks

QPM standard:

• Catania approach with $N_f = 2 + 1$ flavors to charm quark dynamics: $\gg R_{AA}, v_2 \rightarrow$ Spatial diffusion coefficient $D_s(T)$ of charm.

QPM extension:

- From $N_f = 2 + 1$ to $N_f = 2 + 1 + 1$ flavors including charm.
- Momentum dependence m(p,T) QPM*
 ➢ EoS and quark susceptibilities.
 ➢ Transport coefficients and D_s(T).
- Preliminary in a static box:
- Temporal evolution of charm quark distribuction function
- \blacktriangleright Nuclear modification factor R_{AA}

Conclusions and new perspectives

Basic scales of charm and bottom quarks

2) A.Andronic EPJ C76 (2016), 3) R.Rapp, F.Prino J.Phys. G43 (2016)

- $m_{c,b} \gg \Lambda_{QCD}$ pQCD initial production
- *m_{c,b}* >> T_{RHIC,LHC} negligible thermal production
- $\tau_0 < 0.08 \text{ fm/c} << \tau_{QGP}$
- $\tau_{th} \approx \tau_{QGP} >> \tau_{g,q}$
- They experience the full evolution of the QGP.

They carry more informations with respect to their light counterparts.

Hadronization: Final hadron Spectra and observables

Quasi Particle Model (QPM) fitting IQCD

Thermal masses of gluons and light quarks

Parton masses and coupling

Non perturbative dynamics \rightarrow M scattering matrices (q,g \rightarrow Q) evaluated by Quasi-Particle Model fit to **IQCD thermodynamics**

$$m_g^2(T) = \frac{2N_c}{N_c^2 - 1} g^2(T) T^2$$
$$m_q^2(T) = \frac{1}{N_c} g^2(T) T^2$$

+ m_{0s}^2 for strange quark

g(T) from a fit to ϵ from lQCD data \rightarrow good reproduction of P, $\epsilon\text{-3P}$

N_f=2+1

Bulk:

u,d,s

M Standard

no momentum dependence

Quasi Particle Model (QPM) fitting IQCD

Thermal masses of gluons and light quarks

Equation of State and Susceptibilities

Non perturbative dynamics \rightarrow M scattering matrices (q,q \rightarrow Q) evaluated by Quasi-Particle Model fit to **IQCD thermodynamics**

Bulk: u,d,s

N_f=2+1

no momentum dependence

g(T) from a fit to ε from lQCD data \rightarrow good reproduction of P, ε -3P

Standard QPM understimates the quark susceptibilities

 $g^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\lambda\left(\frac{T}{T_{c}} - \frac{T_{s}}{T_{c}}\right)\right]^{2}}$ λ=2.6

 $T_{s}=0.57 T_{c}$

Larger than pQCD especially as $T \rightarrow T_c$

S. Plumari et al, Phys. Rev. D 84 (2011) 094004 H. Berrehrah,, PHYSICAL REVIEW C 93, 044914 (2016) M.L. Sambataro et al. in preparation

Relativistic Boltzmann equation at finite η/s

Bulk evolution

$$p^{\mu}\partial_{\mu}f_{q}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p)=C[f_{q},f_{g}]$$

$$p^{\mu}\partial_{\mu}f_{g}(x,p)+m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p)=C[f_{q},f_{g}]$$

Equivalent to viscous hydro at $\eta/s \approx 0.1$

Free-streaming

field interaction $\varepsilon - 3p \neq 0$

Collision term gauged to some η/s≠ 0

HQ evolution

 $p^{\mu}\partial_{\mu}f_{Q}(x,p) = C[f_{q},f_{g},f_{Q}]$

$$\begin{split} & \Sigma[f_{q}, f_{g}, f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p_{1}'}{2E_{1}'(2\pi)^{3}} \\ & \times [f_{Q}(p_{1}')f_{q,g}(p_{2}') - f_{Q}(p_{1})f_{q,g}(p_{2})] \\ & \times [M_{(q,g) \rightarrow Q}(p_{1}p_{2} \rightarrow p_{1}'p_{2}')] \\ & \times (2\pi)^{4} \delta^{4}(p_{1} + p_{2} - p_{1}' - p_{2}') \end{split}$$

Feynmann diagrams at first order pQCD for HQs-bulk interaction:

Scattering matrices $M_{g,q}$ by QPM fit to IQCD thermodynamics

Catania QPM: some prediction for charm...

- Jiaxing Zhao et al., arXiv:2005.08277

ALICE collaboration, Phys.Lett.B 813 (2021) 136054

Catania QPM: some prediction for charm...

QPM extension: $N_f = 2 + 1 + 1$ and momentum dependence

QPM with $N_f = 2 + 1 + 1$ including charm

Recently, new lattice results for the equation of state of QCD with 2+1+1 dynamical flavors have become available. Therefore, we extend our QPM approach for $N_f = 2 + 1$ to $N_f = 2 + 1 + 1$ where the charm quark is included.

Three cases:

Constant mass $m_c = 1.5 \ GeV$

Thermal mass $m_c^2 = m_{c0}^2 + \frac{N_c^2 - 1}{8N_c}g^2T^2$

Charm Mass constrained by quark susceptibility $m_c \, [{
m Petreczky}]$ from lQCD

Energy density fit to IQCD data

Good reproduction of pressure and interaction measure for three different charm quark masses.

Petreczky, Heavy-Quark Transport from Lattice-QCD, Heavy flavor transport in QCD matter workshop (2021).

QPM extended – momentum dependence

Dyson-Schwinger studies in the vacuum \rightarrow following the model developed by PHSD group

$$M_{g}(T,\mu_{q},p) = \left(\frac{3}{2}\right) \left(\frac{g^{2}(T^{\star}/T_{c}(\mu_{q}))}{6} \left[\left(N_{c} + \frac{1}{2}N_{f}\right)T^{2} + \frac{N_{c}}{2}\sum_{i}\frac{\mu_{q}^{2}}{\pi^{2}}\right] \left[\frac{1}{1 + \Lambda_{g}(T_{c}(\mu_{q})/T^{\star})p^{2}}\right]\right)^{1/2} + m_{\chi g}$$

$$M_{q,\tilde{q}}(T,\mu_{q},p) = \left(\frac{N_{c}^{2} - 1}{8N_{c}}g^{2}(T^{\star}/T_{c}(\mu_{q}))\left[T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right] \left[\frac{1}{1 + \Lambda_{q}(T_{c}(\mu_{q})/T^{\star})p^{2}}\right]\right)^{1/2} + m_{\chi q}$$
Momentum dependent factors

QPM extended – momentum dependence

QPM extended – coupling and drag coefficient

 $0,4 < T < 1 \, GeV$

Large enhancement at low T

Coupling $g(T) \rightarrow$ standard QPM vs extended QPM

• **Comparable value** at high T with a discrepancy of about 10%.

Drag and D_s in QPM extended

Drag coefficient → standard QPM standard QPM including charm extended QPM

- **Increase** at low T consistent with the large enhancement of the coupling in the same T region
- Decrease at high T

Spatial diffusion coefficient D_s

 $T/T_c < 2 \rightarrow$ strong non-perturbative behaviour near to T_c .

high T region \rightarrow the D_s reaches the pQCD limit quickly than the standard QPM.

Preliminary: BOX CALCULATION FOR CHARM → static medium evolution of charm quark distribuction function

- $T > T_c$ slower dynamics
- $T \rightarrow T_c$ the increase in the drag coefficient leads to a faster evolution

Preliminary: Nuclear modification factor *R*_{AA}

$$R_{AA} = f_C(p, t_f) / f_C(p, t_0)$$

Initial momentum distribuction function \rightarrow FONLL for charm quark

Momentum dependent QPM approach

- Better description of recent lQCD data.
- Effects on the global χ^2 coming from the comparison to the experimental data of R_{AA} , v_n ?

Conclusions

Standard QPM:

- Good description of EoS but quark susceptibilities understimated
- * Good description of $R_{AA}^{},\,v_{2}^{}$ at RHIC & LHC energies within error bars
 - \rightarrow Recent access to low $p_T \rightarrow$ overstimation of R_{AA} especially in most central collision at low p_T .

Extended QPM:

- Good reproduction of both EoS and susceptibilities
- Preliminary for a static medium: slower dynamics at high temperature and decrease of $R_{A\!A}$ at low p
 - \rightarrow Effects on observables for realistic simulation?

Thanks for the attention!

June 13 – 17, 2022 Busan, Republic of Korea

Back up slides

Relativistic Boltzmann equation at finite η/s

Bulk evolution

HQ evolution

 $p^{\mu}\partial_{\mu}f_Q(x,p)=C[f_q,f_g,f_Q]$

$$C[f_{q}, f_{g}, f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p_{1}'}{2E_{1}'(2\pi)^{3}} \times [f_{Q}(p_{1}')f_{q,g}(p_{2}') - f_{Q}(p_{1})f_{q,g}(p_{2})] \times [M_{(q,g) \rightarrow Q}(p_{1}p_{2} \rightarrow p_{1}'p_{2}')] \times (2\pi)^{4} \delta^{4}(p_{1}+p_{2}-p_{1}'-p_{2}')$$

Feynmann diagrams at first order pQCD for HQs-bulk interaction:

Scattering matrices $M_{q,q}$ by QPM fit to IQCD thermodynamics

Numerical solution of Boltzmann Equation

□ Use Test-Particle Method to sample the phase space distribution function

$$f(\vec{x}, \vec{p}, t) = \omega \sum_{i=1}^{N_{test}} \delta^{(3)}(\vec{x} - \vec{r}_i(t)) \delta^{(3)}(\vec{p} - \vec{p}_i(t))$$

 F_i solution of Boltzmann eq. \rightarrow Test particles solve classical Hamilton eq. of motion

$$\begin{cases} \vec{p_i}(t + \Delta t) = \vec{p_i}(t - \Delta t) + 2\Delta t \cdot \left(\frac{\partial \vec{p_i}}{\partial t}\right)_{coll} \\ \vec{r_i}(t + \Delta t) = \vec{r_i}(t - \Delta t) - 2\Delta t \cdot \left[\frac{\vec{p_i}(t)}{E_i(t)}\right] \end{cases}$$

Collision Integral mapped through a Stochastic Algorithm

$$P_{22} = \frac{\Delta N_{coll}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{rel} \sigma_{22} \frac{\Delta t}{\Delta^3 x}$$

 $\Delta^3 x$

 $\Delta t \rightarrow 0$ and $\Delta^3 x \rightarrow 0$: exact solution

Final phase-space of HQ + bulk parton scattering sampled according to $M_{QCD}^{P} \rightarrow$ code test through simulations in a "box"

[Scardina, Colonna, Plumari, and Greco PLB v.724, 296 (2013)] [Xu and Greiner PRC v. 71, (2005)]

[P. Danielewicz and G.F. Bertsch, Nucl. Phys. A533 (1991) 712]

Extension to higher order anisotropic flows $v_n(p_T)$

0.8

0.6

30-50%

Pb-Pb 5,02 TeV

5

30-50%

0.4

ESE tecnique and v_n correlations

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic

Hybrid Hadronization Model for HQs

✓ COALESCENCE: Formula developed for the light sector [Greco, Ko, Levai PRL 90 (2003)]

FRAGMENTATION: HQs that do not undergo to Coalescence

$$\frac{dN_H}{d^2 \boldsymbol{P}_T} = \sum_f \int dz \frac{dN_f}{d^2 p_T} \frac{D_{f \to H}(z)}{z^2}$$

[Plumari, Minissale, Das, Coci, Greco, EPJ C 78 (2018) no.4]

We use Peterson parametrization: $D_H(z) \propto \left[z \left(1 - \frac{1}{z} - \frac{\epsilon_c}{1-z} \right)^2 \right]^{-1} \checkmark$ [Peterson et al. PRD 27 (1983) 105]

Parameter \mathcal{E}_{c} tuned to reproduce *D* and *B* meson spectra in pp collisions.

Predictions for D mesons: R_{AA} and elliptic flow v₂

Nuclear modification factor R_{AA}

 $R_{AA}(p_T) \equiv \frac{d^2 N_{AA}/d\eta dp_T}{N_{coll} \cdot d^2 N_{pp}/d\eta dp_T}$

HQs propagate and loose energy in the plasma \rightarrow suppression of hadron distributions at high p_T

 $R_{AA} \approx 1$ weakly interacting or extremely dilute medium

• Intial p_T-spectrum from FONLL pp @5.02 TeV [Cacciari et al. JHEP10 (2012)]

$$R_{AA}^{D^{0}}(p_{T}) = \frac{(dN/d^{2}p_{T})_{AAcoal+fragm}^{D^{0}}}{\frac{N_{AA}^{c}}{N_{pp}^{D}}(dN/d^{2}p_{T})_{ppfragm}^{D^{0}}}$$

$$N_{AA}^{c} = \int d^{2}p_{T} \left(\frac{dN}{d^{2}p_{T}}\right)_{AA}^{charm} \qquad \qquad N_{pp}^{D} = \int d^{2}p_{T} \left(\frac{dN}{d^{2}p_{T}}\right)_{pp}^{charm} \otimes D_{c \to D}$$