Seventh and eighth order cumulants of net-proton number distributions in heavy-ion collisions at RHIC-STAR

Ashish Pandav for the STAR Collaboration
National Institute of Science Education and Research, HBNI, India

$$
\text { June 14, } 2022
$$

:OSOM2の22

In part supported by

Outline

1. Introduction
2. Physics Motivation
3. Data Analysis
4. Results

Introduction: QCD Phase Diagram

B. Mohanty, N. Xu, arXiv:2101.09210
A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

Goal: Study the phase diagram of QCD.
Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_{B}). Fluctuations of conserved quantities are sensitive to phase transition and critical point.

Observables

\square Hyper-order cumulants of net-proton distributions (proxy for net-baryon).

$$
\begin{aligned}
C_{4}= & \left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2} \\
C_{5} & =\left\langle(\delta N)^{5}\right\rangle-10\left\langle(\delta N)^{3}\right\rangle\left\langle(\delta N)^{2}\right\rangle \\
C_{6}= & \left\langle(\delta N)^{6}\right\rangle-15\left\langle(\delta N)^{4}\right\rangle\left\langle(\delta N)^{2}\right\rangle-10\left\langle(\delta N)^{3}\right\rangle^{2}+30\left\langle(\delta N)^{2}\right\rangle^{3} \\
C_{7}= & \left\langle(\delta N)^{7}\right\rangle-21\left\langle(\delta N)^{5}\right\rangle\left\langle(\delta N)^{2}\right\rangle-35\left\langle(\delta N)^{4}\right\rangle\left\langle(\delta N)^{3}\right\rangle+210\left\langle(\delta N)^{3}\right\rangle\left\langle(\delta N)^{2}\right\rangle^{2} \\
C_{8}= & \left\langle(\delta N)^{8}\right\rangle-28\left\langle(\delta N)^{6}\right\rangle\left\langle(\delta N)^{2}\right\rangle-56\left\langle(\delta N)^{5}\right\rangle\left\langle(\delta N)^{3}\right\rangle-35\left\langle(\delta N)^{4}\right\rangle^{2} \\
& \quad+420\left\langle(\delta N)^{4}\right\rangle\left\langle(\delta N)^{2}\right\rangle^{2}+560\left\langle(\delta N)^{2}\right\rangle\left\langle(\delta N)^{3}\right\rangle^{2}-630\left\langle(\delta N)^{2}\right\rangle^{4}
\end{aligned}
$$

Observables

\square Hyper-order cumulants of net-proton distributions (proxy for net-baryon).

$$
\begin{aligned}
& C_{4}=\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2} \text { Here, } \delta N=N-\langle N\rangle \\
& C_{5}=\left\langle(\delta N)^{5}\right\rangle-10\left\langle(\delta N)^{3}\right\rangle\left\langle(\delta N)^{2}\right\rangle \\
& C_{6}=\left\langle(\delta N)^{6}\right\rangle-15\left\langle(\delta N)^{4}\right\rangle\left\langle(\delta N)^{2}\right\rangle-10\left\langle(\delta N)^{3}\right\rangle^{2}+30\left\langle(\delta N)^{2}\right\rangle^{3} \\
& C_{7}=\left\langle(\delta N)^{7}\right\rangle-21\left\langle(\delta N)^{5}\right\rangle\left\langle(\delta N)^{2}\right\rangle-35\left\langle(\delta N)^{4}\right\rangle\left\langle(\delta N)^{3}\right\rangle+210\left\langle(\delta N)^{3}\right\rangle\left\langle(\delta N)^{2}\right\rangle^{2} \\
& C_{8}=\left\langle(\delta N)^{8}\right\rangle-28\left\langle(\delta N)^{6}\right\rangle\left\langle(\delta N)^{2}\right\rangle-56\left\langle(\delta N)^{5}\right\rangle\left\langle(\delta N)^{3}\right\rangle-35\left\langle(\delta N)^{4}\right\rangle^{2} \\
& \quad+420\left\langle(\delta N)^{4}\right\rangle\left\langle(\delta N)^{2}\right\rangle^{2}+560\left\langle(\delta N)^{2}\right\rangle\left\langle(\delta N)^{3}\right\rangle^{2}-630\left\langle(\delta N)^{2}\right\rangle^{4}
\end{aligned}
$$

STAR: PRL, 126, 092301 (2021), PRC,104, 024902 (2021)
\square Hyper-order cumulants (order 5 or higher) probe the nature of phase transition.

Sign of cumulants sensitive
C_{2}, C_{3}, C_{4} : positive for data (7.7200 GeV) and model (LQCD, FRG, HRG, UrQMD, JAM) more distinct signatures needed

Search for Crossover

Goal: Probing signature of transition between QGP and hadronic phase

$\square \chi_{5}, \chi_{6}, \chi_{7}, \chi_{8}$ (Hyper-order cumulants) <0 and $\left|\chi_{8}\right|>\left|\chi_{6}\right|,\left|\chi_{7}\right|>\left|\chi_{5}\right|$ from LQCD, FRG, PQM - more sensitive probes to crossover. Stronger energy dependence.

LQCD: JHEP10 (2018) 205, PRD101, 074502 (2020), PQM: EPJC71, 1694(2011), FRG: PRD104, 094047 (2021)
\square Sign of χ_{6} and χ_{8} together sensitive to hadronic phase, QGP phase and $T_{p c}$.

Search for Crossover

Goal: Probing signature of transition between QGP and hadronic phase

- $\chi_{5}, \chi_{6}, \chi_{7}, \chi_{8}$ (Hyper-order cumulants) <0 and $\left|\chi_{8}\right|>\left|\chi_{6}\right|,\left|\chi_{7}\right|>\left|\chi_{5}\right|$ from LQCD, FRG, PQM - more sensitive probes to crossover. Stronger energy dependence.
LQCD: JHEP10 (2018) 205, PRD101, 074502 (2020), PQM: EPJC71, 1694(2011), FRG: PRD104, 094047 (2021)
\square Sign of χ_{6} and χ_{8} together sensitive to hadronic phase, QGP phase and $T_{p c}$.

Test of Thermal Model

- $C_{6} / C_{2}=C_{8} / C_{2}=1$ at all $\sqrt{ } s_{N N}$ from HRG GCE.

D Deviation from unity observed for HRG CE

Higher-order Cumulants at STAR so far

STAR: PRL 126, 092301 (2021), PRC 104, 024902 (2021), PRL 127, 262301 (2021)

- STAR has measured net-proton cumulants up to sixth-order so far. ($\mathrm{Au}+\mathrm{Au}, \mathrm{Zr}+\mathrm{Zr}, \mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{p}+\mathrm{p}$ collisions)

Higher-order Cumulants at STAR so far

STAR: PRL 126, 092301 (2021), PRC 104, 024902 (2021), PRL 127, 262301 (2021)

Charged Particle Multiplicity

STAR has measured net-proton cumulants up to sixth-order so far. ($\mathrm{Au}+\mathrm{Au}, \mathrm{Zr}+\mathrm{Zr}, \mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{p}+\mathrm{p}$ collisions)

This talk reports measurements on even higher orders: seventh and eighth.

STAR Detector

Main Detectors: Time Projection Chamber and Time-of-Flight. Full azimuthal angle coverage. $|\eta|<1$ coverage.

K. H. Ackermann et al. Nucl. Instrum. Meth. A 499, 624 (2003)

Analysis Procedure

1/ Event Selection

3/ Track selection and PID

5/Calculate Cumulants

7/ Correct for Centrality Bin Width Effect

2/ Centrality Selection

4/ Construct Multiplicity Distributions

6/ Correct for Efficiency

8/ Compute Statistical Errors

9/ Compute Systematic Errors

10/ Comparison with models

Dataset Details

Collision system and energy	Au +Au at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=27,54.4$, and 200 GeV $(300,550$, and 900 million events, respectively.)
Collision centrality	$0-40 \%, 40-50 \%, 50-60 \%, 60-70 \%$ and $70-80 \%$
Centrality selection	Using charged particle multiplicity excluding protons
Charged Particle Selection	Protons and antiprotons to construct net-protons
Detectors for PID	Time Projection Chamber (TPC) and Time-of Flight (TOF)

Phase Space Coverage

PID Detector	Transverse Momentum Range $\left(\mathrm{p}_{\mathrm{T}}\right)$	Rapidity (y)
TPC	0.4 to $0.8 \mathrm{GeV} / \mathrm{c}$	$\|\mathrm{y}\|<0.5$
TPC+TOF	0.8 to $2.0 \mathrm{GeV} / \mathrm{c}$	$\|\mathrm{y}\|<0.5$

Event-by-event Raw Net-proton Distributions

1) Net-proton distributions, $0-10 \%$ and $30-40 \%$ centrality, efficiency uncorrected.
2) Values of the mean increase as energy decreases, effect of baryon stopping.

Larger width \rightarrow larger stat. errors: $\operatorname{err}\left(C_{r}\right) \propto \frac{\sigma^{r}}{\sqrt{\mathrm{Nevts}}}$

Event-by-event Raw Net-proton Distributions

- Deviation from Skellam observed towards the tail of the distribution.

1) Net-proton distributions, $0-10 \%$ and $30-40 \%$ collisions, efficiency uncorrected.
2) Values of the mean increase as energy decreases, effect of baryon stopping.

Larger width \rightarrow larger stat. errors: $\operatorname{err}\left(C_{r}\right) \propto \frac{\sigma^{r}}{\sqrt{\mathrm{Nevts}}}$

Analysis Techniques (Corrections and Uncertainties)

- Reconstruction efficiency

- Statistical uncertainties:
> Bootstrap method

Sources of systematic uncertainties:
> Particle identification
> Background estimates (DCA)
$>$ Track quality cuts
> Efficiency variation
\square Centrality bin width correction
$C_{n}=\sum_{r} w_{r} C_{n, r}$ where $w_{r}=n_{r} / \sum_{r} n_{r}, n=1,2,3,4 \ldots$ Here, n_{r} is no. of events in $r^{t h}$ multiplicity bin

Centrality Dependence of Net-Proton C_{7} / C_{1} and C_{8} / C_{2}

Central 0-40\% measurements consistent with zero within uncertainties for 54.4 and 200 GeV . Measurement at $\sqrt{ } s_{N N}=27 \mathrm{GeV}$ negative with $\sim 1.4 \sigma$ significance.
\square Peripheral data close to zero for the three energies.

Centrality Dependence of Net-Proton C_{7} / C_{1} and C_{8} / C_{2}

Central 0-40\% measurements consistent with zero within uncertainties for 54.4 and 200 GeV . Measurement at $\sqrt{ } s_{N N}=27 \mathrm{GeV}$ negative with $\sim 1.4 \sigma$ significance.
\square Peripheral data close to zero for the three energies.

Beam Energy Dependence of Net-Proton C_{7} / C_{1} and C_{8} / C_{2}

- 0-40\% measurements: No clear energy dependence observed within large uncertainties.
- Peripheral data: either positive or consistent with zero.

Summary Plot:

Beam Energy Dependence of Net-Proton Cumulant Ratios

STAR: PRL, 126, 092301 (2021), PRC,104, 024902 (2021), PRL, 127, 262301 (2021)
LQCD: PRD101, 074502 (2020), HRG CE: NPA 1008, 122141 (2021)

- Non-monotonic $\sqrt{ } s_{N N}$ dependence of C_{4} / C_{2} observed - consistent with CP expectation.
- C_{6} / C_{2} increasingly negative with decreasing $\sqrt{S_{N N}}-$ consistent with lattice QCD prediction ($\mu_{B}<110 \mathrm{MeV}$).
- The new data on C_{7} / C_{1} and C_{8} / C_{2} (0-40\%): large uncertainties. Negative ratios at $\sqrt{s_{N N}}=27 \mathrm{GeV}$ at 1.4σ level.
- Peripheral data ≥ 0 for all ratios.
\square Hyper-order cumulants are important observable in the study of QCD phase structure. Combination of signs of hyper-order cumulants are sensitive to hadronic phase, QGP phase and $T_{p c}$.

First look at the seventh and eighth order net-proton cumulants at STAR reported.
Current net-proton C_{7} / C_{1} and C_{8} / C_{2} measurements at 54.4 and 200 GeV are consistent with zero within large uncertainties. Ratios at $\sqrt{ } s_{N N}=27 \mathrm{GeV}$ are negative with $\sim 1.4 \sigma$ significance. Measurements at lower energies will be interesting.

Measurements with high statistic STAR BES-II data ($\sim 10-20$ times of current statistics) ongoing. Large number of events to be collected for $A u+A u$ at $\sqrt{s_{N N}}=200$ $\mathrm{GeV}: ~ \sim 20$ billions (year 2023+2025).

BES-II at RHIC

High statistics collected for $\sqrt{ } s_{N N}=7.7-54.4 \mathrm{GeV}$:Precision measurement	STAR FXT: Extend precision measurements to $\mu_{B}=750 \mathrm{MeV}$

Detector Upgrades: iTPC, eTOF, EPD: Enlarged phase Space coverage.
Crucial for CP search.

BES-II at RHIC

| High statistics collected
 for $\sqrt{ } s_{N N}=7.7-54.4 \mathrm{GeV}$
 :Precision measurement STAR FXT: Extend
 precision measurements
 to $\mu_{B}=750 \mathrm{MeV}$ l |
| :--- | :--- |

Detector Upgrades: iTPC, eTOF, EPD: Enlarged phase Space coverage.
Crucial for CP search.

More than 2 billion events at $\sqrt{ } s_{N N}=3 \mathrm{GeV}$ $\left(\mu_{B}=750 \mathrm{MeV}\right)$

BES-II at RHIC

High statistics collected for $\sqrt{ } s_{N N}=7.7-54.4 \mathrm{GeV}$:Precision measurement

STAR FXT: Extend
precision measurements to $\mu_{B}=750 \mathrm{MeV}$

Detector Upgrades: iTPC, eTOF, EPD: Enlarged phase Space coverage.
Crucial for CP search.

THANK YOU FOR YOUR ATTENTION

$\mu_{B}(\mathrm{GeV})$

