Seventh and eighth order cumulants of net-proton number distributions in heavy-ion collisions at RHIC-STAR

Ashish Pandav for the STAR Collaboration National Institute of Science Education and Research, HBNI, India

June 14, 2022

Outline

- 1. Introduction
- 2. Physics Motivation
- 3. Data Analysis
- 4. Results

The 20th International Conference on Strangeness in Quark Matter, 13-17th June, 2022, Busan, Republic of Korea

Introduction: QCD Phase Diagram

Goal: Study the phase diagram of QCD.

Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_B). Fluctuations of conserved quantities are sensitive to phase transition and critical point.

Net-proton C_7 and C_8 at STAR-RHIC – Ashish Pandav for the STAR Collaboration

Observables

□ Hyper-order cumulants of net-proton distributions (proxy for net-baryon).

$$C_{4} = \langle (\delta N)^{4} \rangle - 3\langle (\delta N)^{2} \rangle^{2} \qquad \text{Here, } \delta N = N - \langle N \rangle$$

$$C_{5} = \langle (\delta N)^{5} \rangle - 10\langle (\delta N)^{3} \rangle \langle (\delta N)^{2} \rangle$$

$$C_{6} = \langle (\delta N)^{6} \rangle - 15\langle (\delta N)^{4} \rangle \langle (\delta N)^{2} \rangle - 10\langle (\delta N)^{3} \rangle^{2} + 30\langle (\delta N)^{2} \rangle^{3}$$

$$C_{7} = \langle (\delta N)^{7} \rangle - 21\langle (\delta N)^{5} \rangle \langle (\delta N)^{2} \rangle - 35\langle (\delta N)^{4} \rangle \langle (\delta N)^{3} \rangle + 210\langle (\delta N)^{3} \rangle \langle (\delta N)^{2} \rangle^{2}$$

$$C_{8} = \langle (\delta N)^{8} \rangle - 28\langle (\delta N)^{6} \rangle \langle (\delta N)^{2} \rangle - 56\langle (\delta N)^{5} \rangle \langle (\delta N)^{3} \rangle - 35\langle (\delta N)^{4} \rangle^{2}$$

$$+ 420\langle (\delta N)^{4} \rangle \langle (\delta N)^{2} \rangle^{2} + 560\langle (\delta N)^{2} \rangle \langle (\delta N)^{3} \rangle^{2} - 630\langle (\delta N)^{2} \rangle^{4}$$

Observables

□ Hyper-order cumulants of net-proton distributions (proxy for net-baryon).

$$C_{4} = \langle (\delta N)^{4} \rangle - 3\langle (\delta N)^{2} \rangle^{2} \qquad \text{Here, } \delta N = N - \langle N \rangle$$

$$C_{5} = \langle (\delta N)^{5} \rangle - 10\langle (\delta N)^{3} \rangle \langle (\delta N)^{2} \rangle$$

$$C_{6} = \langle (\delta N)^{6} \rangle - 15\langle (\delta N)^{4} \rangle \langle (\delta N)^{2} \rangle - 10\langle (\delta N)^{3} \rangle^{2} + 30\langle (\delta N)^{2} \rangle^{3}$$

$$C_{7} = \langle (\delta N)^{7} \rangle - 21\langle (\delta N)^{5} \rangle \langle (\delta N)^{2} \rangle - 35\langle (\delta N)^{4} \rangle \langle (\delta N)^{3} \rangle + 210\langle (\delta N)^{3} \rangle \langle (\delta N)^{2} \rangle^{2}$$

$$C_{8} = \langle (\delta N)^{8} \rangle - 28\langle (\delta N)^{6} \rangle \langle (\delta N)^{2} \rangle - 56\langle (\delta N)^{5} \rangle \langle (\delta N)^{3} \rangle - 35\langle (\delta N)^{4} \rangle^{2}$$

$$+ 420\langle (\delta N)^{4} \rangle \langle (\delta N)^{2} \rangle^{2} + 560\langle (\delta N)^{2} \rangle \langle (\delta N)^{3} \rangle^{2} - 630\langle (\delta N)^{2} \rangle^{4}$$

Hyper-order cumulants (order 5 or higher) probe the nature of phase transition.

Sign of cumulants sensitive

 C_2, C_3, C_4 : positive for data (7.7-200 GeV) and model (LQCD, FRG, HRG, UrQMD, JAM) – more distinct signatures needed

STAR: PRL, 126, 092301 (2021), PRC, 104, 024902 (2021)

Net-proton C_7 and C_8 at STAR-RHIC – Ashish Pandav for the STAR Collaboration

Search for Crossover

STAR

□ χ_5 , χ_6 , χ_7 , χ_8 (Hyper-order cumulants) < 0 and $|\chi_8| > |\chi_6|$, $|\chi_7| > |\chi_5|$ from LQCD, FRG, PQM – more sensitive probes to crossover. Stronger energy dependence. LQCD: JHEP10 (2018) 205, PRD101, 074502 (2020), PQM: EPJC71, 1694(2011), FRG: PRD104, 094047 (2021)

□ Sign of χ_6 and χ_8 together sensitive to hadronic phase, QGP phase and T_{pc} .

Search for Crossover

STAR

 χ₅, χ₆, χ₇, χ₈ (Hyper−order cumulants) < 0 and |χ₈|>|χ₆|, |χ₇|>|χ₅| from LQCD, FRG, PQM - more sensitive probes to crossover. Stronger energy dependence.
 LQCD: JHEP10 (2018) 205, PRD101, 074502 (2020), PQM: EPJC71, 1694(2011), FRG: PRD104, 094047 (2021)

 Sign of χ₆ and χ₈ together sensitive to hadronic phase, QGP phase and T_{nc}.

Test of Thermal Model

Higher-order Cumulants at STAR so far

STAR: PRL 126, 092301 (2021), PRC 104, 024902 (2021), PRL 127, 262301 (2021)

Overview on higher order cumulants: Ho San Ko (June 15), Plenary Talk

STAR has measured net-proton cumulants up to sixth-order so far. (Au+Au, Zr+Zr, Ru+Ru and p+p collisions)

Net-proton C_7 and C_8 at STAR-RHIC – Ashish Pandav for the STAR Collaboration

Higher-order Cumulants at STAR so far

STAR: PRL 126, 092301 (2021), PRC 104, 024902 (2021), PRL 127, 262301 (2021)

Overview on higher order cumulants: Ho San Ko (June 15), Plenary Talk

STAR has measured net-proton cumulants up to sixth-order so far. (Au+Au, Zr+Zr, Ru+Ru and p+p collisions)

□ This talk reports measurements on even higher orders: seventh and eighth.

STAR Detector

Main Detectors: Time Projection Chamber and Time-of-Flight. Full azimuthal angle coverage. $|\eta| < 1$ coverage.

K. H. Ackermann et al. Nucl. Instrum. Meth. A 499, 624 (2003)

Net-proton C_7 and C_8 at STAR-RHIC – Ashish Pandav for the STAR Collaboration

Analysis Procedure

1/ Event Selection

3/ Track selection and PID

5/Calculate Cumulants

7/ Correct for Centrality Bin Width Effect 2/ Centrality Selection

4/ Construct Multiplicity Distributions

6/ Correct for Efficiency

8/ Compute Statistical Errors

9/ Compute Systematic Errors

10/ Comparison with models

Dataset Details

Collision system and energy	Au+Au at $\sqrt{s_{NN}} = 27, 54.4$, and 200 GeV (300, 550, and 900 million events, respectively.)	
Collision centrality	0-40%, 40-50%, 50-60%, 60-70% and 70-80%	
Centrality selection	Using charged particle multiplicity excluding protons	
Charged Particle Selection	Protons and antiprotons to construct net-protons	
Detectors for PID	Time Projection Chamber (TPC) and Time-of Flight (TOF)	

Phase Space Coverage

PID Detector	Transverse Momentum Range (p _T)	Rapidity (y)
TPC	0.4 to 0.8 GeV/c	y < 0.5
TPC+TOF	0.8 to 2.0 GeV/c	y < 0.5

Event-by-event Raw Net-proton Distributions

 Net-proton distributions, 0-10% and 30-40% centrality, efficiency uncorrected.
 Values of the mean increase as energy decreases, effect of baryon stopping. Larger width → larger stat. errors: err(C_r) ∝ σ^r/√N_{evts}

Event-by-event Raw Net-proton Distributions

 Net-proton distributions, 0-10% and 30-40% collisions, efficiency uncorrected.
 Values of the mean increase as energy decreases, effect of baryon stopping. Larger width → larger stat. errors: err(C_r) ∝ σ^r/√N_{evts}

Analysis Techniques (Corrections and Uncertainties)

Reconstruction efficiency

□ Centrality bin width correction

$$C_n = \sum_r w_r C_{n,r}$$
 where $w_r = n_r / \sum_r n_r$, $n=1,2,3,4...$
Here, n_r is no. of events in r^{th} multiplicity bin

- □ Statistical uncertainties:
- Bootstrap method
- □ Sources of systematic uncertainties:
- Particle identification
- Background estimates (DCA)
- Track quality cuts
- Efficiency variation

X. Luo, Phys. Rev. C 91, (2015) 034907 T. Nonaka et al, Phys. Rev. C 95, (2017) 064912 X. Luo et al, J.Phys. G 40, 105104 (2013) X. Luo, J. Phys. G 39, 025008 (2012) X.Luo et al, Phys.Rev. C99 (2019) no.4, 044917 A.Pandav et al, Nucl. Phys. A 991, (2019)121608

Centrality Dependence of Net-Proton C_7/C_1 and C_8/C_2

Average No. of Participant Nucleons

□ Central 0-40% measurements consistent with zero within uncertainties for 54.4 and 200 GeV. Measurement at √s_{NN} = 27 GeV negative with ~1.4σ significance.
 □ Peripheral data close to zero for the three energies.

Centrality Dependence of Net-Proton C_7/C_1 and C_8/C_2

□ Central 0-40% measurements consistent with zero within uncertainties for 54.4 and 200 GeV. Measurement at √s_{NN} = 27 GeV negative with ~1.4σ significance.
 □ Peripheral data close to zero for the three energies.

Beam Energy Dependence of Net-Proton C_7/C_1 and C_8/C_2

0-40% measurements: No clear energy dependence observed within large uncertainties.
 Peripheral data: either positive or consistent with zero.

Summary Plot: Beam Energy Dependence of Net-Proton Cumulant Ratios

LQCD: PRD101, 074502 (2020), HRG CE: NPA 1008, 122141 (2021)

□ Non-monotonic $\sqrt{s_{NN}}$ dependence of C_4/C_2 observed – consistent with CP expectation.

- □ C_6/C_2 increasingly negative with decreasing $\sqrt{s_{NN}}$ – consistent with lattice QCD prediction ($\mu_B < 110$ MeV).
- □ The new data on C_7/C_1 and C_8/C_2 (0-40%): large uncertainties. Negative ratios at $\sqrt{s_{NN}} = 27$ GeV at 1.4 σ level.

□ Peripheral data \ge 0 for all ratios.

Net-proton C_7 and C_8 at STAR-RHIC – Ashish Pandav for the STAR Collaboration

Summary and Outlook

- □ Hyper-order cumulants are important observable in the study of QCD phase structure. Combination of signs of hyper-order cumulants are sensitive to hadronic phase, QGP phase and T_{pc} .
- □ First look at the seventh and eighth order net-proton cumulants at STAR reported.
- □ Current net-proton C_7/C_1 and C_8/C_2 measurements at 54.4 and 200 GeV are consistent with zero within large uncertainties. Ratios at $\sqrt{s_{NN}} = 27$ GeV are negative with ~1.4 σ significance. Measurements at lower energies will be interesting.
- □ Measurements with high statistic STAR BES-II data (~10 20 times of current statistics) ongoing. Large number of events to be collected for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV: ~ 20 billions (year 2023+2025).

BES-II at RHIC

STAR Internal Note: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

High statistics collected for $\sqrt{s_{NN}}$ = 7.7 – 54.4 GeV :Precision measurement STAR FXT: Extend precision measurements to μ_B =750 MeV Detector Upgrades: iTPC, eTOF, EPD: Enlarged phase Space coverage. Crucial for CP search.

BES-II at RHIC

STAR Internal Note: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

High statistics collected for $\sqrt{s_{NN}}$ = 7.7 – 54.4 GeV :Precision measurement STAR FXT: Extend precision measurements to μ_B =750 MeV Detector Upgrades: iTPC, eTOF, EPD: Enlarged phase Space coverage. Crucial for CP search.

BES-II at RHIC

High statistics collected for $\sqrt{s_{NN}} = 7.7 - 54.4$ GeV :Precision measurement

STAR FXT: Extend precision measurements to μ_{B} =750 MeV

Detector Upgrades: iTPC, eTOF, EPD: Enlarged phase Space coverage. Crucial for CP search.

J. Cleymans et. al, PRC. 73, 034905 (2006)