Multiplicity-dependent production of heavy mesons with strangeness in small systems at LHCb

Chenxi Gu, Tsinghua University
on behalf of the LHCb collaboration
Motivation

• Strangeness enhancement was one of the first proposed signatures of quark-gluon plasma (QGP) formation in heavy ion collisions
 ➢ strangeness production proceeds mainly via gluons fusion in QGP.
 ➢ s quark mass lower than QGP temperature, $s\bar{s}$ quark pairs can be produced thermally.
• Recently, enhanced strangeness production is also observed in high multiplicity pp and pPb collisions.
• The QGP conditions could be approached in pp collisions where a large number of particles are produced.

Hadronization Process

• Fragmentation mechanism
 - Lots of partons produced by outgoing quarks form into hadrons.

• Coalescence mechanism
 - Multiple quark wave functions overlap in position and velocity phase space.
 - Hadrons enhancement at low p_T.

• B mesons offer unique probes of the hadronization process
 - There is no b content in incoming beam particles.
 - Production well described by pQCD.
 - Fragmentation functions measured with B mesons.
 - Enhanced production of B_s^0 relative to B^0 as particle density increases could be caused by coalescence.
LHCb detector

- A single-arm spectrometer in the forward direction, charm & beauty factory
 - Vertex Locator (20 μm IP resolution)
 - Tracking system ($\Delta p/p = 0.5 – 1.0\%$)
 - RICH: $p/K/\pi$ separation
 - Flexible software trigger

- VELO tracks: have hits in the VELO
- Back tracks: subset of VELO tracks, point in the backward direction
Fragmentation functions ratios in pp collisions

- Fragmentation functions measured with B mesons: \(\frac{f_s}{f_d} \propto \frac{N_{corr}(B_s^0)}{N_{corr}(B^0)} \)

- $\frac{f_s}{f_d}$ is observed to depend on the B meson transverse momentum.
- No dependence on the collision energy.

Phys. Rev. D 104(2021) 032005
Strangeness enhancement with B mesons in pp collisions at 13TeV

• The pp 13TeV data was taken in 2016+2017+2018 with 5.4 fb$^{-1}$.

• Ratio of B_s^0/B^0 cross sections versus multiplicity, in several p_T bins
 ➢ Both states are simultaneously accessible in $J/\psi\pi^+\pi^-$, Relative corrections are generally close to 1.

\[
\frac{\sigma_{B_s^0}}{\sigma_{B^0}} = \frac{N_{B_s^0}}{N_{B^0}} \times \frac{B_{B_s^0}}{B_{B^0}} \times \frac{\varepsilon_{acc}^{B_s^0}}{\varepsilon_{acc}^{B^0}} \times \frac{\varepsilon_{trig}^{B_s^0}}{\varepsilon_{trig}^{B^0}} \times \frac{\varepsilon_{PID}^{B_s^0}}{\varepsilon_{PID}^{B^0}} \times \frac{\varepsilon_{reco}^{B_s^0}}{\varepsilon_{reco}^{B^0}},
\]

• Event characterization:
 ➢ Multiplicity represented by VELO tracks or back tracks
 ➢ Restrict to events a single reconstructed primary vertex
 ➢ Require z position of primary vertex to fall in the central area for stable VELO acceptance
Event characterization

- NoBias events are selected based on the LHC beam clock, which indicates that a bunch crossing has occurred, without any other trigger requirements.
- B^0 signal events are extracted from the data, and background is removed using the sPlot method.
- Events with B mesons have significantly different charged particle densities than nobias events.

$< N_{tracks}^{VELO} >_{\text{NoBias}} = 37.7$
$< N_{back}^{tracks} >_{\text{NoBias}} = 11.1$
$< N_{tracks}^{VELO} >_{B^0} = 71.1$
$< N_{back}^{tracks} >_{B^0} = 17.4$
Yield

- Fit model: Crystal Ball functions + exponential function

\[
\frac{\sigma_{B_s^0}}{\sigma_{B^0}} = \frac{N_{B_s^0}}{N_{B^0}} \times \frac{\mathcal{B}_{B_s^0}}{\mathcal{B}_{B^0}} \times \frac{\varepsilon_{acc}^{B_s^0}}{\varepsilon_{acc}^{B^0}} \times \frac{\varepsilon_{trig}^{B_s^0}}{\varepsilon_{trig}^{B^0}} \times \frac{\varepsilon_{PID}^{B_s^0}}{\varepsilon_{PID}^{B^0}} \times \frac{\varepsilon_{reco}^{B_s^0}}{\varepsilon_{reco}^{B^0}},
\]

LHCb $pp \sqrt{s} = 13$ TeV
30 < $N_{\text{VELO tracks}}^{\text{VELO}}$ ≤ 40

- Total fit
- Background

$B^0 \rightarrow J/\psi \pi^+ \pi^-$
$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

Counts/(5 MeV/c²)

Counts/(5 MeV/c²)

Strangeness enhancement

arXiv:2204.13042

Chenxi Gu, SQM2022

8
Efficiencies

- \(\frac{\varepsilon_{acc}^{B_0^0}}{\varepsilon_{acc}^{B_s^0}} = 1 \pm 0.01 \), \(\frac{\varepsilon_{trig}^{B_0^0}}{\varepsilon_{trig}^{B_s^0}} = 1 \pm 0.01 \), \(\frac{\varepsilon_{PID}^{B_0^0}}{\varepsilon_{PID}^{B_s^0}} = 1 \pm 0.01 \)

- \(\frac{\varepsilon_{reco}^{B_0^0}}{\varepsilon_{reco}^{B_s^0}} = 0.86 \pm 0.04 \): Due to the difference in the dipion mass distributions produced in the \(B_s^0 \) and \(B^0 \) decays.

- Due to the similarities of the \(B_s^0 \) and \(B^0 \) decays, many systematic uncertainties partially cancel in this ratio of cross sections.
Results: B_s^0/B^0 vs VELO tracks

- The vertical error bars represent uncorrelated uncertainties.
- The vertical error boxes represent fully correlated uncertainties.
- The horizontal bands show the values measured in e^+e^- collisions.
- The ratio shows an increasing trend with the VELO tracks.
- At low multiplicity, consistent with fragmentation in vacuum.

Chenxi Gu, SQM2022
Results: B_s^0 / B^0 vs back tracks

- No significant dependence of forward B_s^0 / B^0 ratio on backward multiplicity.
- The results indicate that the mechanism responsible for the ratio increase is related to the local particle density.
Results: B^0_s/B^0 in low p_T bins

- The $\sigma_{B^0_s}/\sigma_{B^0}$ ratio increases with multiplicity (slope significance = 3.4σ). Consistent with coalescence mechanism qualitatively.
- At low multiplicity the ratio is consistent with values measured in e^+e^- collisions.
Results: B_s^0/B^0 in high p_T bins

- No significant dependence on multiplicity and consistent with data from e^+e^- collisions.
- High p_T b quarks have less overlap with the low-p_T bulk of the quarks, thereby dominantly hadronize via fragmentation.

arXiv:2204.13042
Chenxi Gu, SQM2022
Work in progress: D_s^+/D^+ ratio in pPb collisions at 8.16TeV

- We are studying strangeness enhancement in pPb collision by D_s^+/D^+ ratio.
 - We use the same strategy as B analysis, the statistics of D mesons are larger.
- ALICE has studied in 5.02 TeV pPb collision.

\[
D^+ \rightarrow K^-\pi^+\pi^+
\]

\[
D_s^+ \rightarrow K^+K^-\pi^+
\]

\[
R_{D_s^+/D^+}(p_T, y^*, PV \text{ nTracks}) = \frac{N(D_s^+ \rightarrow K^+K^+\pi^\mp)}{N(D^+ \rightarrow K^+\pi^\mp\pi^\mp)} \times \frac{\mathcal{B}(D^+ \rightarrow K^+\pi^\mp\pi^\mp)}{\mathcal{B}(D_s^+ \rightarrow K^+K^+\pi^\mp)} \times \frac{\epsilon_D^+}{\epsilon_{D_s^+}}
\]

LHCb preliminary
p-Pb, $\sqrt{s_{NN}} = 8$ TeV
~13 nb$^{-1}$
Summary and outlook

• In pp system, the B_s^0/B^0 enhancement is observed at low p_T and consistent with coalescence mechanism qualitatively.

• No significant dependence on backwards multiplicity.

• In pPb system, the D_s^+/D^+ vs multiplicity is in progress.

• In Run3, we have more small systems, such as OO, pO to study multiplicity dependency.