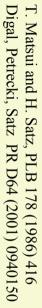


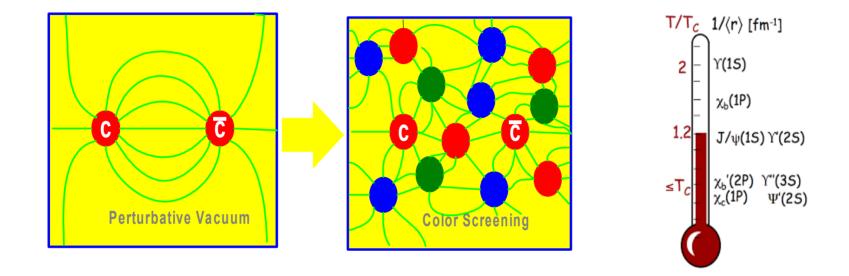
$\psi(2S)$ production and nuclear modification factor in nucleus-nucleus collisions with ALICE

Hushnud Hushnud

(on behalf of the ALICE Collaboration)

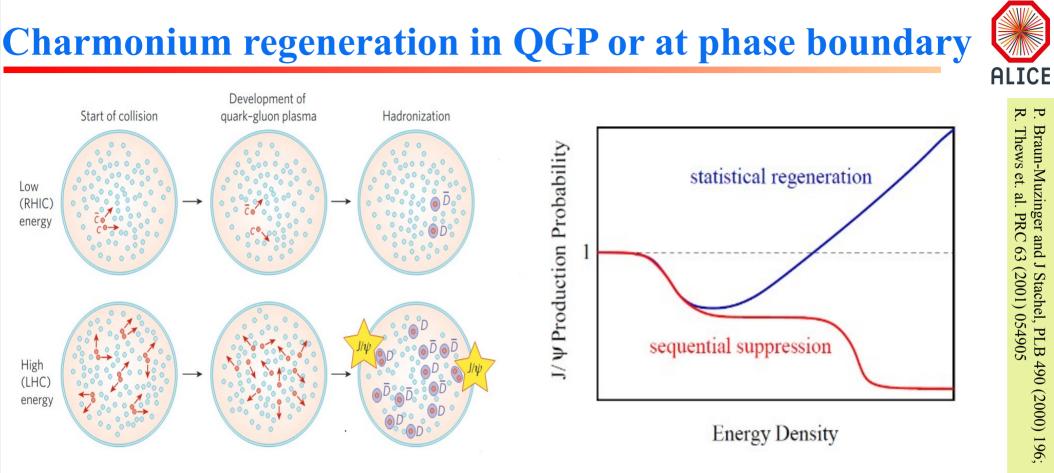
Aligarh Muslim University, Aligarh, India





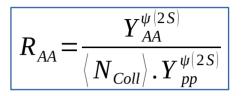
The 20th International Conference on Strangeness in Quark Matte 13-17 June 2022 Busan, Republic of Korea

Charmonium suppression in QGP



- At high energy density (>> 1 GeV/fm³): phase transition of nuclear matter quark-gluon plasma (QGP)
- In deconfined medium, quarkonia show suppression due to the Debye screening and dissociation
- Excited states (less bound) are more easily dissociated sequential suppression (quarkonia as QGP thermometer)

14/06/2022

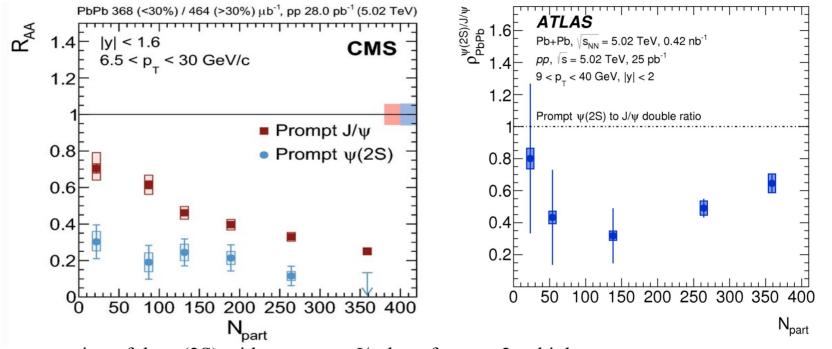


• At LHC: enhancement of charmonia states $(\mathbf{c} \, \overline{\mathbf{c}})$ via recombination due to large charm quark densities.

Charmonium observables in Pb–Pb collisions

ALICE

• Nuclear modification factor R_{AA} : Ratio of the quarkonium yield in AA (Y_{AA}) with respect to the pp one (Y_{pp}) , scaled by the average number of binary collisions $\langle N_{coll} \rangle$ (from Glauber model)



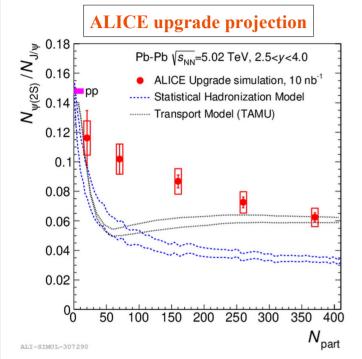
• Ratio of $\psi(2S)$ -to-J/ ψ :

Single Ratio =
$$\frac{BR \sigma_{\psi(2S)}}{BR \sigma_{J/\psi}}$$
 Double Ratio = $\frac{\left[\sigma_{\psi(2S)}/\sigma_{J/\psi}\right]_{PbPb}}{\left[\sigma_{\psi(2S)}/\sigma_{J/\psi}\right]_{pp}}$

$\psi(2S)$ measurements at the LHC energies

- Stronger suppression of the $\psi(2S)$ with respect to J/ψ by a factor ~ 2 at high- p_T
- Strong suppression observed at high- p_T by ATLAS and CMS

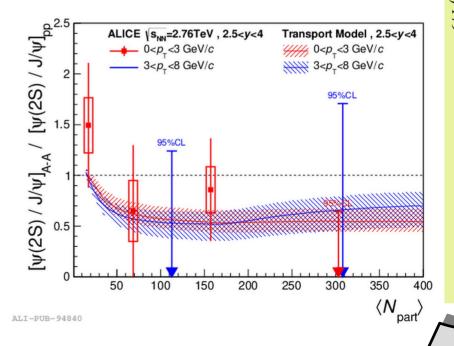
For complete characterization of $\psi(2S)$ production an extension to low- p_T is needed where recombination mechanism is at play


14/06/2022

ψ(2S) production and nuclear modification factor in nucleus-nucleus collisions with ALICE (H. Hushnud)

(2017) 162301;

2018) 762


Motivation for $\psi(2S)$ measurement in Pb–Pb collisions

• Hint for stronger suppression of $\psi(2S)$ compared to J/ ψ observed in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, but large uncertainties prevent a strong conclusion.

Significantly higher statistics (by a factor of ~11) available using full Run 2 Pb–Pb data at $\sqrt{s_{NN}} = 5.02$ TeV!

ψ(2S)-to-J/ψ ratio measurements weakly dependent on charm production cross section employed as input to the models in Pb–Pb collisions important constraints on models

JHEP SHM: TAMU:X 05 (2016)Andronic Du. and R al., Rapp, Nature Nucl 199 723 (2018)(2015)

ALICE

14/06/2022

A Large Ion Collider Experiment

SPD: Primary vertex

Central barrel:

 $J/\psi \rightarrow e^+e^- \, (|y| < 0.9)$

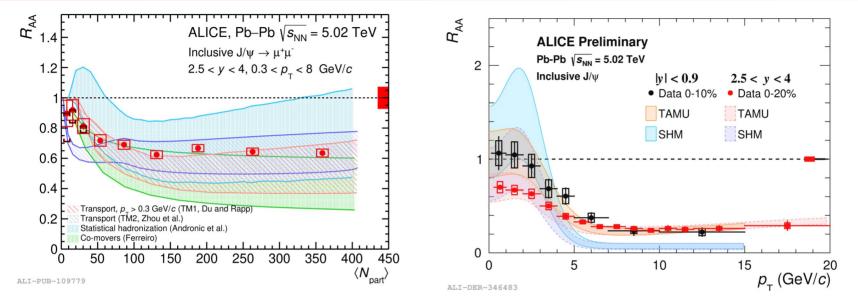
Electrons reconstructed using ITS and TPC Particle identification: TPC dE/dx

Forward muon spectrometer:

 $J/\psi, \psi(2S) \rightarrow \mu^+\mu^- (2.5 < y < 4.0)$

Reconstruction of muon tracks; triggering of events with muon candidates

V0

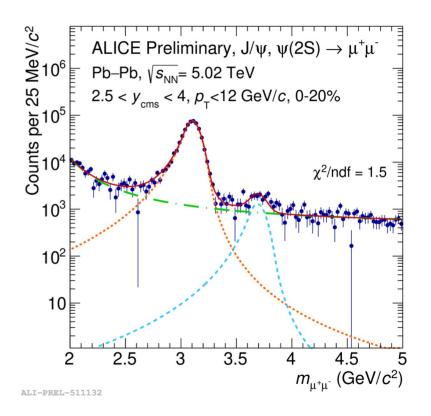

(V0A: 2.8 < η < 5.1 & V0C: -3.7 < η < -1.7) Trigger, background rejection and centrality measurements in AA collisions

Acceptance coverage in both y regions is down to zero $p_{\rm T}$

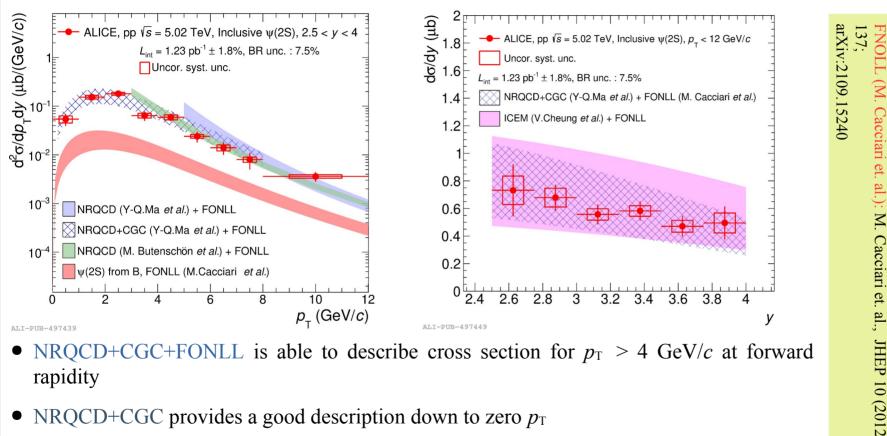
For ALICE quarkonium results in Pb–Pb, see talks from X. Bai on Tues. 14th June, 9 am L. Massacrier on Tues. 14 June, 2.40 pm

14/06/2022

Inclusive J/\psi *R***_{AA}**


- SHM : J/ψ produced at the QGP phase boundary
- TAMU: J/ψ produced according to rate equation with gain (regeneration) and loss (melting) terms
- Theoretical models, in agreement with data
 - Both centrality and p_T dependencies (at low-p_T) are qualitatively well described
 - Rapidity dependence is also described by recombination models
 - → Not possible to disentangle between the two different (re)generation scenarios using J/ψ

ψ(2S) signal extraction in Pb–Pb


ALICE

- $\psi(2S)$ signal extracted by using event mixing subtraction technique
- Significant signal observed in most central collisions and down to zero $p_{\rm T}$, thanks to the usage of full Run 2 statistics
- Reference measurement is obtained from the study of $\psi(2S)$ cross sections in pp collisions at $\sqrt{s} = 5.02$ TeV [arXiv: 2109.15240]

9

$\psi(2S)$ pp reference measurements

• NRQCD+CGC+FONLL is able to describe cross section for $p_T > 4$ GeV/c at forward rapidity

- NRQCD+CGC provides a good description down to zero $p_{\rm T}$
- Good agreement with theoretical models observed also as a function of rapidity

14/06/2022

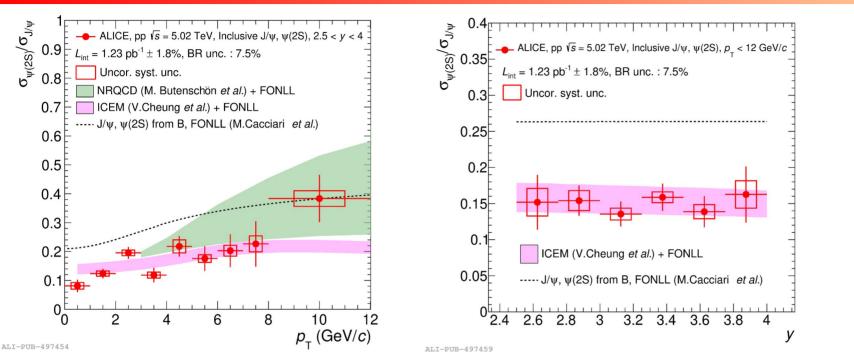
$\psi(2S)$ production and nuclear modification factor in nucleus-nucleus collisions with ALICE (H. Hushnud)

3

Butenschön et al

Phys.

Rev

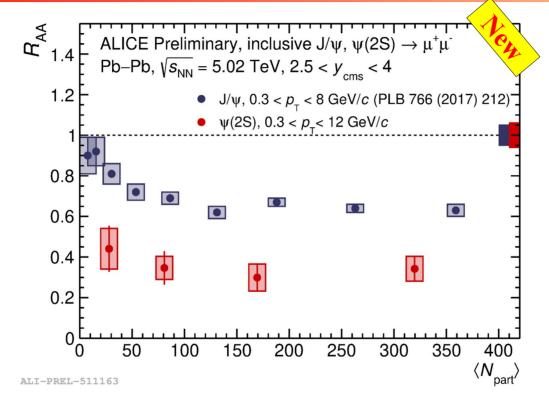

Ma et al.,

Phys. Rev. Lett. 106

Venugopalan

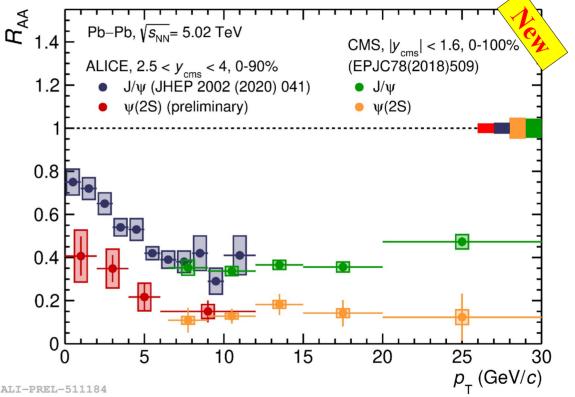
Phys. Rev. D

$\psi(2S)$ -to-J/ ψ cross section ratio


- $\psi(2S)$ -to-J/ ψ cross-section ratio shows an increasing trend with p_T
- No significant dependence with rapidity
- Theoretical models show an overall good agreement within uncertainties

ırXiv:2109.15240 Butenschön Cacciari \leq heung and R. Butenschön Cacciari et. Vogt, et al., JHEP 10 (2012) Phys. Rev. D Phys. Rev

Centrality dependence of the $\psi(2S) R_{AA}$



- $\psi(2S)$ significantly suppressed as a function of centrality, R_{AA} almost flat above $N_{part} \sim 75$
- $\psi(2S)$ shows stronger suppression than the J/ ψ

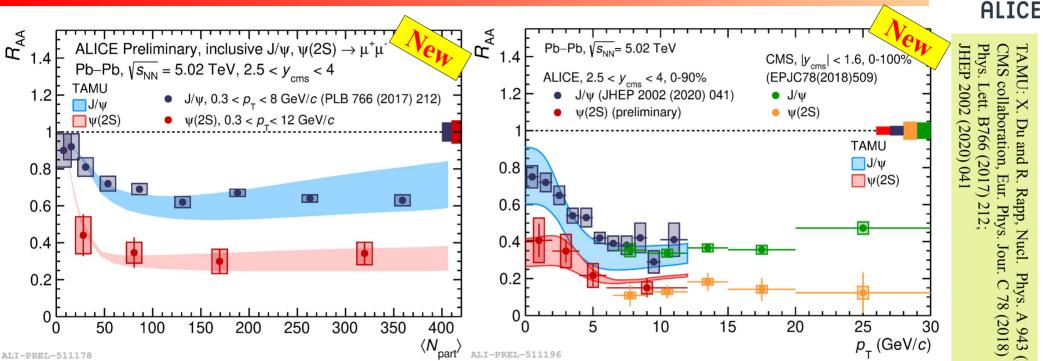
$p_{\rm T}$ dependence of the $\psi(2S) R_{\rm AA}$

- $\psi(2S)$ significantly suppressed as a function of $p_{\rm T}$, and shows stronger suppression than the J/ψ .
- Stronger suppression at high- $p_{\rm T}$ and increasing trend of R_{AA} towards low- $p_{\rm T}$ for both charmonium states.
- Good agreement between CMS and ALICE data in the common $p_{\rm T}$ range, in spite of different rapidity coverages.

14/06/2022

JHEP

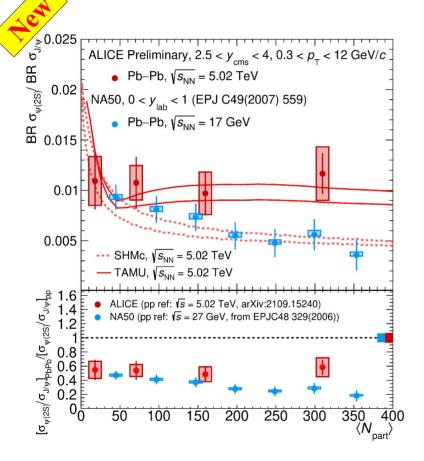
2002 (2020) 04

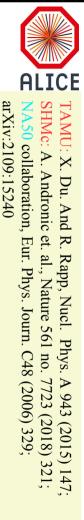

CMS collaboration, Eur.

Phys. Jour.

82

(2018) 509

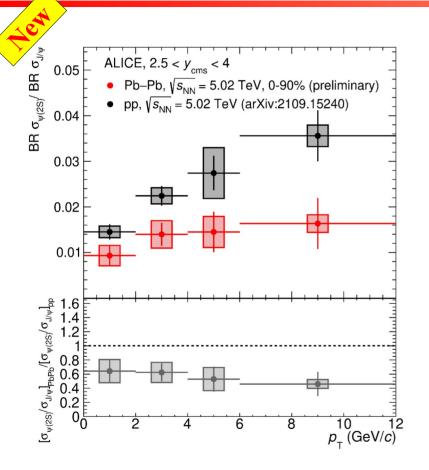

R_{AA} results: comparison to theoretical model


• TAMU model, which includes charmonium regeneration, reproduces $p_{\rm T}$ and centrality dependence of R_{AA} for both J/ ψ and ψ (2S)

CMS **FAMU:**

Centrality dependence of \psi(2S)-to-J/\psi

- Significant suppression of ψ(2S)-to-J/ψ ratio in Pb–Pb with respect to pp
- No significant centrality dependence
- Hint of a larger $\psi(2S)$ -to-J/ ψ ratio in central collisions at the LHC compared to SPS
- TAMU model well reproduces the cross section ratio at the LHC energy while SHMc tends to underestimate the data



ALI-PREL-523330

15

$p_{\rm T}$ dependence of $\psi(2S)$ -to-J/ ψ in Pb–Pb collisions

- A significant suppression of $\psi(2S)$ -to-J/ ψ ratio in Pb–Pb with respect to pp also observed as a function of p_T
- The double ratio reaches ~ 0.5 at high- $p_{\rm T}$

ALI-PREL-511153

Summary

pp collisions:

- ✓ $\psi(2S)$ cross section and $\psi(2S)$ -to-J/ ψ measurements carried out by ALICE at $\sqrt{s} = 5.02$ TeV.
- ✓ Theoretical models reproduce the $\psi(2S)$ cross section well within uncertainties.
- Pb–Pb collisions:
 - The $\psi(2S) R_{AA}$ is larger at low- p_T than at high- p_T as expected from the contribution of charm quark regeneration at low- p_T .
 - Stronger suppression of the $\psi(2S)$ -to-J/ ψ ratio in Pb–Pb with respect to pp, no significant p_T or centrality dependence observed within uncertainties.
 - ✓ Comparison of J/ ψ and ψ (2S) R_{AA} with transport model shows a fair agreement within uncertainties.
 - ✓ Transport model, that includes recombination of charm quarks in the QGP phase, reproduces the $\psi(2S)$ -to-J/ ψ ratio better than SHMc model for central events.

Prospects for Run3/4

✓ Significant increase of statistical precision expected with $L_{int} \sim 10 \text{ nb}^{-1}$, thanks to continuous readout.

14/06/2022

 $\psi(2S)$ production and nuclear modification factor in nucleus-nucleus collisions with ALICE (H. Hushnud)

18