HEAVY-FLAVOR ANISOTROPIC FLOW AT RHIC AND LHC ENERGIES WITHIN A FULL TRANSPORT APPROACH

Collaborators:
Vincenzo Greco
Vincenzo Minissale
Salvatore Plumari
Maria Lucia Sambataro
Yifeng Sun

Lucia Oliva

The 20th International Conference on Strangeness in Quark Matter
SQM2022
13-17 June 2022
Busan, Republic of Korea
few Heavy-Flavor (HF) quarks and antiquarks
CHARM and BOTTOM
produced in relativistic heavy-ion collisions

- $m_{\text{HQ}} \gg \Lambda_{\text{QCD}} \rightarrow$ HQ produced in pQCD initial hard scatterings
- $m_{\text{HQ}} \gg T_{\text{HICs}} \rightarrow$ negligible thermal production of HQs

HQ production points symmetric in the forward-backward hemispheres

- $\tau_0^{\text{HQ}} < 0.08 \text{ fm}/c \ll \tau_0^{\text{QGP}} \rightarrow$ HQ production much earlier than QGP formation
- $\tau_{\text{th}}^{\text{HQ}} \approx \tau_{\text{th}}^{\text{QGP}} \approx 5-10 \text{ fm}/c \gg \tau_{\text{th}}^{\text{QGP}} \rightarrow$ HQ thermalization time comparable to QGP life

HQ final states keep a better memory of both initial stage and QGP evolution

- $q < m_{\text{HQ}}, p_{\text{HQ}}; m_{\text{HQ}} \ll g T_{\text{HICs}} (b \text{ or low momentum } c) \rightarrow$ Brownian motion of HQs in QGP
HEAVY FLAVORS IN RELATIVISTIC HICS

INITIAL PRODUCTION
- pQCD-NLO
- CNM effects
- initial-state fluctuations

DYNAMICS IN QGP
- Boltzmann/Fokker-Planck
- thermalization
- transport coefficients
- collisional & radiative

HADRONIZATION
- recombination and/or fragmentation
- heavy-flavor hadrochemistry

IMPRESSIONS OF STRONG FIELDS
- vorticity
- electromagnetic field
- Glasma phase

INITIAL ENERGY DENSITY
- QGP phase
- HG phase
- Final detected particle distributions
HEAVY FLAVORS IN RELATIVISTIC HICS

IMPACT OF STRONG FIELDS
- vorticity
- electromagnetic field
- Glasma phase

INITIAL PRODUCTION
- pQCD-NLO
- CNM effects
- initial-state fluctuations

DYNAMICS IN QGP
- Boltzmann/Fokker-Planck
- thermalization
- transport coefficients
- collisional

HADRONIZATION
- recombination and/or fragmentation
- heavy-flavor hadrochemistry

HF anisotropic flow coefficients
\[v_n = \langle \cos(n(\phi - \Psi_r)) \rangle \]

\[\frac{d^3N}{d^3p} = \frac{1}{2\pi} \int \frac{d^2N}{p_T dp_T dy} \left(1 + 2 \sum_{n=1}^{\infty} v_n(p_T, y) \cos(n(\phi - \Psi_r))\right) \]

\(v_1, v_2, v_3 \)

\(v_2, v_3, v_4 \)

\(\tau \sim 0 \text{ fm/c} \)
\(\tau \sim 1 \text{ fm/c} \)
\(\tau \sim 10 \text{ fm/c} \)
\(\tau \sim 10^{15} \text{ fm/c} \)

Modified from picture of Chun Shen (McGill University, Montreal QC, Canada)
FULL BOLTZMANN TRANSPORT APPROACH

BULK EVOLUTION

\[p^\mu \partial_\mu f_q(x, p) + m(x) \partial_x m(x) \partial_\mu f_q(x, p) = C[f_q, f_g] \]
\[p^\mu \partial_\mu f_g(x, p) + m(x) \partial_x m(x) \partial_\mu f_g(x, p) = C[f_q, f_g] \]

Free-streaming Field interaction collision kernel gauged to some \(\eta/s \neq 0 \)

HQ EVOLUTION

\[p^\mu \partial_\mu f_Q(x, p) = C[f_q, f_g, f_Q](x, p) \]

Non perturbative dynamics:
Extended \(M \) scattering matrices \((q,g \rightarrow Q)\) evaluated by Quasi-Particle Model
fit to IQCD thermodynamics

Boltzmann transport equivalent to viscous hydro at \(\eta/s \approx 0.1 \)

extension of the QPM (e.g., momentum dependence)

talk of M. L. SAMBATARO
FULL BOLTZMANN TRANSPORT APPROACH

BULK EVOLUTION

\[
p^{\mu} \partial_{\mu} f_{q}(x, p) + m(x) \partial_{x} m(x) \partial_{p}^\mu f_{q}(x, p) = C[f_{q}, f_{g}]
\]

\[
p^{\mu} \partial_{\mu} f_{g}(x, p) + m(x) \partial_{x} m(x) \partial_{p}^\mu f_{g}(x, p) = C[f_{q}, f_{g}]
\]

Free-streaming Field interaction collision kernel gauged to some \(\eta/s \neq 0 \)

\(\varepsilon - 3p \neq 0 \)

HQ EVOLUTION

\[
p^{\mu} \partial_{\mu} f_{Q}(x, p) = C[f_{q}, f_{g}, f_{Q}](x, p)
\]

Boltzmann transport equivalent to viscous hydro at \(\eta/s \approx 0.1 \)

[Image of Boltzmann transport equivalent to viscous hydro]

Hybrid hadronization scheme for heavy quarks

COALESCEENCE + FRAGMENTATION

\[
\frac{dN_{\text{Hadron}}}{d^2 p_T} = g_H \int \prod_{i=1}^{n} p_i d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) f_W(x_1, \ldots, x_n; p_1, \ldots, p_n) \delta(p_T - \sum_i p_{iT})
\]

\[
\frac{dN_{h}}{d^2 p_h} = \sum_f \int dz \frac{dN_f}{d^2 p_f} D_f \to_h(z)
\]

[Image of hybrid hadronization scheme]

Remarkable impact of coalescence for the description of experimental data (e.g., \(R_{AA}, v_2, v_3 \) for \(D \) mesons, charmed baryon/meson enhancement in pp)

talk of V. MINISSALE
INTENSE FIELDS AND HEAVY FLAVOR TRANSPORT

✓ HUGE ANGULAR MOMENTUM GENERATING A STRONG VORTICITY

- tornado cores $\sim 10^{-1} \, s^{-1}$
- Jupiter's spot $\sim 10^{-4} \, s^{-1}$
- He nanodroplets $\sim 10^{7} \, s^{-1}$
- urHICs $\sim 10^{22} - 10^{23} \, s^{-1}$

✓ INTENSE ELECTROMAGNETIC FIELDS

- Earth's field $\sim 1 \, G$
- laboratory $\sim 10^{6} \, G$
- magnetars $\sim 10^{14} - 10^{18} \, G$
- urHICs $\sim 10^{18} - 10^{19} \, G$

Impact on HQ transport coefficients and D meson directed flow

Vorticity ω

Impact on D meson directed flow

Since 2017

Since 2016
Huge **orbital angular momentum** of the colliding system ➢ in ultra-relativistic HICs $J \approx 10^5 - 10^6 \hbar$
➢ dominated by the y component perpendicular to the reaction plane
➢ partly transferred to the plasma

asymmetry in local participant density from forward and backward going nuclei

\[
\rho(x_\perp, \eta_s) = \rho_0 \frac{W(x_\perp, \eta_s)}{W(0, 0)} \exp \left[- \frac{(|\eta_s| - \eta_0)^2}{2\sigma_\eta^2} \right] \\
W(x_\perp, \eta_s) = 2(N_A(x_\perp)f_-(\eta_s) + N_B(x_\perp)f_+(\eta_s))
\]

\[
f_+(\eta_s) = f_-(-\eta_s) = \begin{cases}
0 & \eta_s < -\eta_m \\
\frac{\eta_s + \eta_m}{2\eta_m} & -\eta_m \leq \eta_s \leq \eta_m \\
1 & \eta_s > \eta_m
\end{cases}
\]

TILTED FIREBALL
on the reaction plane

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

huge vorticity in agreement with Λ polarization studies

TILTED FIREBALL
on the reaction plane

negative slope of charged particle $v_1(\eta)$
Excellent qualitative prediction with LangevinV approach
\(dv_1^D/dy \approx 0.02-0.04 \) (\(\approx 10-15 \) times larger than light charged)

RHIC ENERGY

EXP: \(dv_1^D/dy = -0.080 \pm 0.017 \) (stat)\(\pm 0.016 \) (syst)
about 30 times larger than that of kaons

TH: \(dv_1^D/dy = -0.065 \) (25-30 times larger than ch.)
relativistic BM equations for both QGP and HQs

the slope of \(\langle v_1^D \rangle \) is \(\sim 50 \) times smaller than that at RHIC
(in line with model predictions) and is consistent with 0

LHC ENERGY

\(\langle v_1^D \rangle \)

\(\langle v_1^D \rangle \approx 0.02-0.04 \) (\(\approx 10-15 \) times larger than light charged)

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)
ORIGIN OF D-MESON DIRECTED FLOW

\(v_1 (HQs) \gg v_1 (QGP) \)

origin of the large directed flow of HQs different from the one of light particles

longitudinal asymmetry leads to pressure push of the bulk on the HQs

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)
ORIGIN OF D-MESON DIRECTED FLOW

\[v_1 (HQs) \gg v_1 (QGP) \]

origin of the large directed flow of HQs different from the one of light particles

longitudinal asymmetry leads to pressure push of the bulk on the HQs

effective because the HQ interaction in QGP is largely non-perturbative

strict connection between the magnitude of the D-meson \(v_1 \) and the HQ diffusion coefficient

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

Similar conclusions with POWLANG approach
A. Beraudo et al., JHEP 05, 279 (2021)
Huge magnetic field in the overlap area up to $eB \approx 5-50 \text{ m}_\pi^2$

- mainly produced by spectators protons
- dominated by the y component
- intense electric field generated by Faraday induction
- charged currents induced in the conducting QGP generates a magnetic field pointing towards the initial one

external charge and current produced by a point-like charge in longitudinal motion

\[J_{\text{ind}} = \sigma_{\text{el}} E \]

Maxwell equations can be solved analytically for a medium with constant electric conductivity

BM eq. with EM interaction term

\[p^\mu \partial_\mu f(x, p) + q F_{\text{ext}}^{\mu\nu} p_\nu \partial_\mu f(x, p) = C[f] \]
The huge EM fields induce a splitting in the DIRECTED FLOW of particles with the same mass and opposite charge.

\[\Delta v_1 = v_1^+ - v_1^- \]

- **\(\Delta v_1 \) of light hadrons in AA: \(O(10^{-4} - 10^{-3}) \)**
- **\(\Delta v_1 \) of heavy mesons in AA: \(O(10^{-2}) \)**
- **\(\Delta v_1 \) of light mesons in pA: \(O(10^{-2}) \)**

Reviews

The electromagnetic fields induce a large splitting in the directed flow of HEAVY QUARKS.

\[\Delta v_1(D) = v_1(D^0) - v_1(\bar{D}^0) \]

DIRECTED FLOW IN A+A AT RHIC ENERGY

DIRECTED FLOW OF NEUTRAL D MESONS

RHIC ENERGY

\[\frac{d(\Delta v_1)}{dy} \big|_{\exp} = -0.011 \pm 0.024 \text{(stat)} \pm 0.016 \text{(syst)} \]

\[\frac{d(\Delta v_1)}{dy} \big|_{\text{th}} = -0.01 \]

\[\approx 10 \text{ times larger than charged} \]

in agreement with

SLOPE TIME EVOLUTION

\[\Delta v_1(D) \text{ more sensitive to the early QGP evolution when } T \text{ is higher,} \]

while \[\Delta v_2(D) \text{ probes more } T \sim T_c \]

\[\rightarrow \text{ include } v_1(D) \text{ in Bayesian fits} \]

\[\Delta v_1 \text{ (HQ) } \gg \Delta v_1 \text{ (QGP)} \]

charm quarks are more sensitive to the EM fields due to the early production

Exp. data: STAR Coll., PRL. 123 (2019) 162301
EVENT-BY-EVENT FLUCTUATIONS

Event-by-event fluctuations in the initial nucleon positions

nth-order spatial eccentricities

\[e_n = \frac{r_n}{r_\perp} \cos[n(n\phi - \Psi_n)] \]

\[\Psi_n = \frac{1}{n} \arctan \left(\frac{r_n}{r_\perp} \sin(n\phi) \right) \]

\[r_\perp = \sqrt{x^2 + y^2} \quad \phi = \arctan(y/x) \]

D-MESON \(v_2 \) AND \(v_3 \)

- \(v_2 \) larger in more peripheral collisions
 - mainly generated by the geometry of overlap region
- \(v_3 \) not much sensitive to the collision centrality
 - mainly driven by the fluctuations of the triangularity of overlap region
- coalescence increases \(v_2 \) and \(v_3 \) at \(p_T > 2 \text{ GeV} \)

Figures

- **Left Diagram:** Elliptic and triangular flow formulas.
- **Right Diagram:** Comparison of experimental data (ALICE Coll.) with theoretical predictions for \(v_2 \) and \(v_3 \) at different collision energies.

References

- M. L. Sambataro et al., 2206.03160

ESE technique: selection of events with **same centrality** but **different average bulk flow** on the basis of the magnitude of the 2°-order harmonic reduced flow vector q_2

\[
q_2 = \frac{|\vec{Q}_2|}{\sqrt{M}} = \sum_{j=1}^{M} e^{i2q_j}
\]

- small q_2
- large q_2

Increasing interest on studying observables with multi-differential methods based on event shape

- Transverse spherocity analysis in small systems

L. Oliva, W. Fan, P. Moreau, S.A. Bass and E. Bratkovskaya, 220404194

- Anti-correlation between ε_2 and ε_3
- Non-linear correlation between ε_2 and ε_4

SPATIAL ECCENTRICITIES

- Pb+Pb@2.76 TeV (30-50)%
ESE: $v_n - v_m$ CORRELATIONS

Correlations between ϵ_n and ϵ_m in the initial geometry leads to correlations between v_n and v_m

- Good description of experimental data for charged particles
- Prediction of comparable D-meson correlations w.r.t. bulk

$\nu_n - \nu_m$ CORRELATIONS

SYMmetric CUMULANT CORRELATOR

Same approach and $D_s(T)$ describing $R_{AA}(p_T) & v_2(p_T)$

M. L. Sambataro et al., 2206.03160
ESE: q_2-SELECTED ELLIPTIC FLOW

q_2-SELECTED D-MESON $v_2(p_T)$

v_2 (small q_2) < v_2 (unbiased)

v_2 (large q_2) > v_2 (unbiased)

about 50% difference between q_2-selected and unbiased events in both centrality class with no transverse momentum dependence

⇒ ESE selection related to a global property of the events

D-MESON $v_2(p_T)$ RATIO

M. L. Sambataro et al., 2206.03160
EXTENSION TO BOTTOM DYNAMICS

CHARM vs BOTTOM FLOW COEFFICIENTS

- Good description of R_{AA} and v_2 of electrons from semileptonic B decay
- Prediction of R_{AA} and v_2 for B meson

indication for a strong coupling of bottom quarks with collectively expanding bulk

M.L. Sambataro et al., in preparation

NUCLEAR MODIFICATION FACTOR

Exp. data from talk of R. Arnaldi at HP2020

ELLiptic FLOW
Results from $R_{AA}(p_T)$ and $v_2(p_T)$ of B mesons

- D_s is ideally M independent ($M \to \infty$) since from kinetic theory:
 \[
 \frac{\tau_{th}^b}{\tau_{th}^c} \approx \frac{\gamma_c}{\gamma_b} \approx \frac{M_b}{M_c}
 \]

- D_s is a measure of thermalization time:
 \[
 \tau_{th} \approx 1.3 \frac{M}{2\pi T D_s (T/T_c)^2} \text{ fm/c}
 \]

In QPM approach $D_s(c)$ is 30-40% larger than $D_s(b)$

Bottom quarks expected to be fully thermalized @ FCC

M.L. Sambataro et al., in preparation

CHARM vs BOTTOM SPATIAL DIFFUSION COEFFICIENT
Full Boltzmann transport approaches for the description of HQ dynamics in relativistic heavy-ion collisions

QPM for non-perturbative HQ interaction in QGP
coalescence plus fragmentation hadronization scheme
initial-state fluctuations
electromagnetic and vortical fields

✓ The D^0-meson v_1 gives information on the transport properties of the hot QCD matter: magnitude associated with the HQ diffusion coefficient and splitting connected to the QGP electric conductivity

✓ For D mesons v_1 is more sensitive to the early QGP evolution when T is higher, while v_2 probes more $T\sim T_c$. Inclusion in Bayesian fit and for $D_s(T)$ estimate?

✓ Spatial diffusion coefficient $D_s(T)$ that reproduces D-meson R_{AA} and v_2 gives correct predictions for v_3 and q_2-selected anisotropic coefficients

✓ Prediction for significant $v_n - v_m$ correlation of D mesons, comparable to that of bulk particles

✓ Indication for a strong coupling of bottom quarks with the collectively expanding bulk

Thank you for your attention!