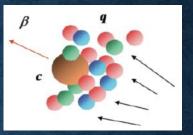


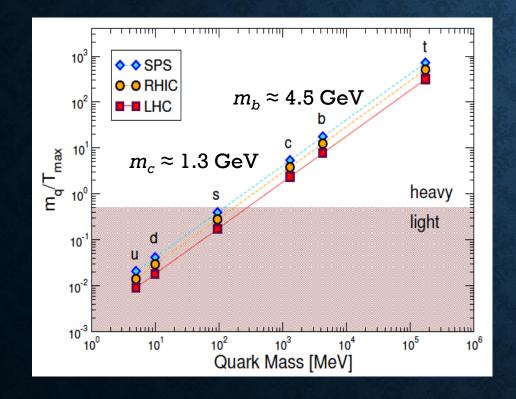
The 20th International Conference on Strangeness in Quark Matter SQM2022

> 13-17 June 2022 Busan, Republic of Korea

HEAVY-FLAVOR ANISOTROPIC FLOW AT RHIC AND LHC ENERGIES WITHIN A FULL TRANSPORT APPROACH

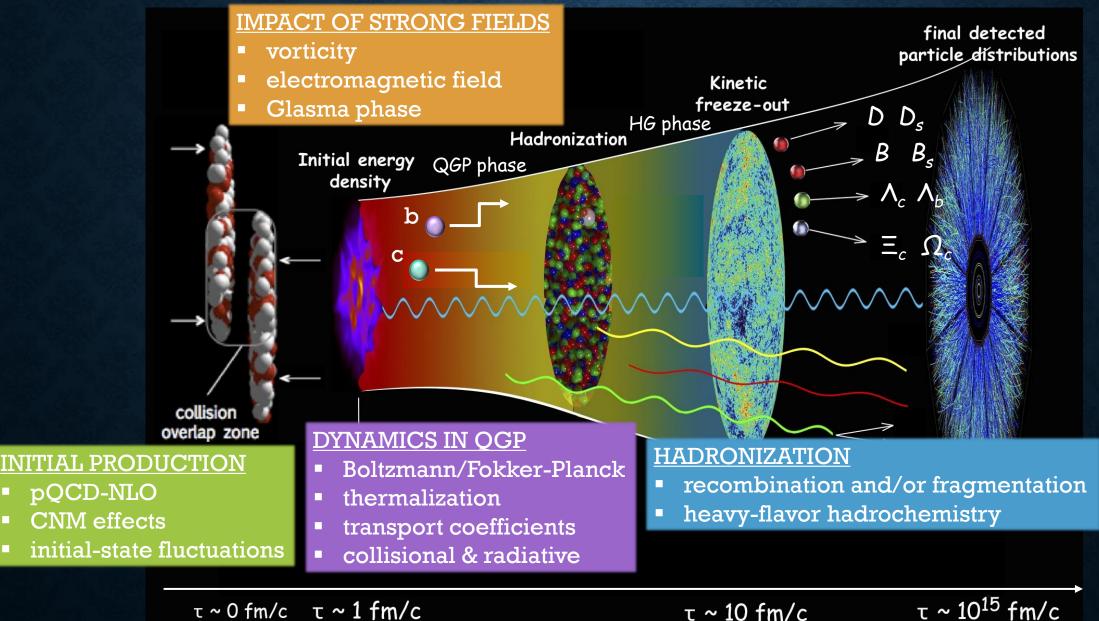
Collaborators: Vincenzo Greco Vincenzo Minissale Salvatore Plumari Maria Lucia Sambataro Yifeng Sun


Lucia Oliva



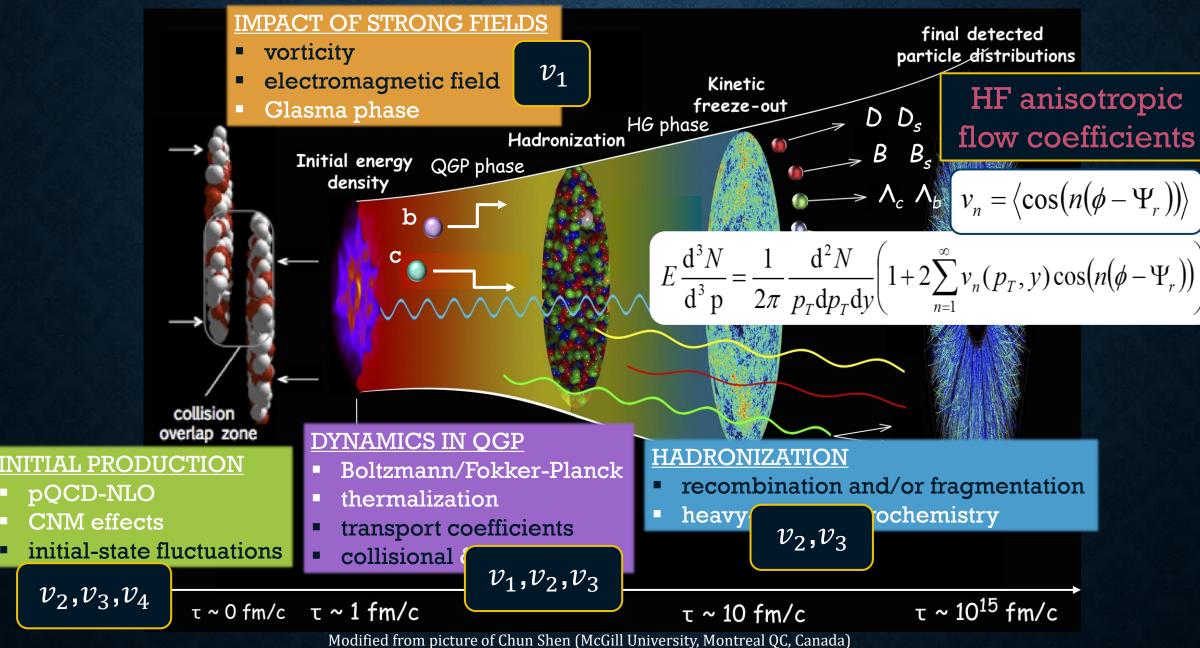
HEAVY QUARKS (HQ) IN QGP: BASIC SCALES

few Heavy-Flavor (HF) quarks and antiquarks **CHARM** and **BOTTOM** produced in relativistic heavy-ion collisions



- → $\mathbf{m}_{HQ} \gg \Lambda_{QCD}$ → HQ produced in pQCD initial hard scatterings
- > $m_{HQ} \gg T_{HICs}$ > negligible thermal production of HQs HQ production points symmetric in the forward-backward hemispheres
- > τ_0^{HQ} < 0.08 fm/c ≪ τ_0^{QGP} → HQ production much earlier than QGP formation
- > $\tau_{th}^{HQ} \approx \tau^{QGP} \approx 5-10 \text{ fm/c} \gg \tau_{th}^{QGP} \rightarrow HQ$ thermalization time comparable to QGP life

HQ final states keep a better memory of both initial stage and QGP evolution


> $q < m_{HQ}, p_{HQ}; m_{HQ} \ll gT_{HICs}$ (b or low momentum c) →
Brownian motion of HQs in QGP

HEAVY FLAVORS IN RELATIVISTIC HICS

Modified from picture of Chun Shen (McGill University, Montreal QC, Canada)

HEAVY FLAVORS IN RELATIVISTIC HICS

FULL BOLTZMANN TRANSPORT APPROACH

BULK EVOLUTION

$$p^{\mu}\partial_{\mu}f_{q}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p) = C[f_{q},f_{g}]$$
$$p^{\mu}\partial_{\mu}f_{g}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p) = C[f_{q},f_{g}]$$

Boltzmann transport equivalent to viscous hydro at $\eta/s \approx 0.1$

Free-streaming

Field interaction $\varepsilon - 3p \neq 0$

tion collision kernel gauged to some $\eta/s \neq 0$ 0 M. Ruggieri et al., Phys. Rev. C 89, 054914 (2014)

HQ EVOLUTION

$$p^{\mu}\partial_{\mu}f_Q(x,p) = \mathcal{C}[f_q, f_g, f_Q](x,p)$$

$$\mathcal{C}[f_Q] = \frac{1}{2E_1} \int \frac{d^3 p_2}{2E_2(2\pi)^3} \int \frac{d^3 p'_1}{2E_{1'}(2\pi)^3} \\ \times [f_Q(p'_1)f_{q,g}(p'_2) - f_Q(p_1)f_{q,g}(p_2)] \\ \times |\mathcal{M}_{(q,g)+Q}(p_1p_2 \to p'_1p'_2)|^2 \\ \times (2\pi)^4 \delta^4(p_1 + p_2 - p'_1 - p'_2)$$

Scardina et al., Phys. Rev. C 96, 044905 (2017)

Non perturbative dynamics: \mathcal{M} scattering matrices $(q,g \rightarrow Q)$ evaluated by Quasi-Particle Model fit to **1QCD thermodynamics** S. Plumari et al., Phys. Rev. D 84, 094004 (2011)

$$m_g^2(T) = \frac{2N_c}{N_c^2 - 1} g^2(T) T^2$$
$$g^2(T) = \frac{48\pi^2}{(11N_c - 2N_f) \ln\left[\lambda\left(\frac{T}{T_c} - \frac{1}{N_c}g^2(T)\right)\right]}$$

extension of the QPM (e.g., momentum dependence)

talk of M. L. SAMBATARO

, p/T⁴

 $(\epsilon-3p)/T^4$

100

Wuppertal-Budapest

 $\square p/T^4$

300

0

200

(ε-3p)/T

T (MeV)

400

500

 $\left(\frac{T_s}{T_c}\right)$

600

FULL BOLTZMANN TRANSPORT APPROACH

BULK EVOLUTION

$$p^{\mu}\partial_{\mu}f_{q}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p) = C[f_{q},f_{g}]$$

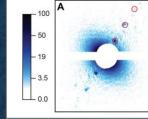
$$p^{\mu}\partial_{\mu}f_{g}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p) = C[f_{q},f_{g}]$$
Free-streaming
Field interaction
 $\varepsilon - 3p \neq 0$
Collision kernel gauged to some $\eta/s \neq 0$
 M . Ruggieri et al., Phys. Rev. C 89, 054914 (2014)
$$p^{\mu}\partial_{\mu}f_{Q}(x,p) = C[f_{q},f_{g},f_{Q}](x,p)$$
Hybrid hadronization scheme for heavy quarks
COALESCENCE + FRACMENTATION
$$\frac{dN_{Hadron}}{d^{2}p_{r}} = g_{\mu} \int_{l=1}^{n} p_{l} d\sigma_{l} \frac{d^{3}p_{l}}{(2\pi)^{3}} \int_{q} (x_{l},p_{l}) \int_{p} (w(x_{1},...,x_{n};p_{1},...,p_{n}) \delta(p_{r} - \sum_{l} p_{l}r)$$
 $\frac{dN_{h}}{d^{2}p_{h}} = \sum_{f} \int_{p} dz \frac{dN_{f}}{d^{2}p_{l}} \underbrace{D_{f+h}(z)}{D_{f+h}(z)}$

Remarkable impact of coalescence for the description of experimental data (e.g., R_{AA} , v_2 , v_3 for D mesons, charmed baryon/meson enhancement in pp)

talk of V. MINISSALE

INTENSE FIELDS AND HEAVY FLAVOR TRANSPORT

✓ HUGE ANGULAR MOMENTUM GENERATING A STRONG **VORTICITY**



tornado cores $\sim 10^{-1} \text{ s}^{-1}$

Jupiter's spot

 $\sim 10^{-4} \, \mathrm{s}^{-1}$

He nanodroplets $\sim 10^7 \text{ s}^{-1}$

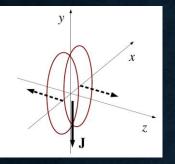
Beilderum Logitison exploring to of the to a field of the top of top of the top of top of

tets **urHICs** $\sim 10^{22} - 10^{23} s^{-1}$

vorticity ω

impact on HQ transport coefficients and D meson directed flow

✓ INTENSE ELECTROMAGNETIC FIELDS



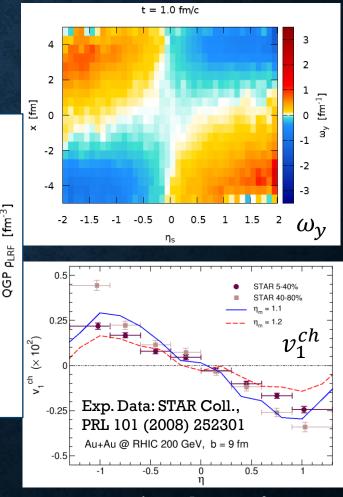
magnetic field B

since 2016

impact on D meson directed flow

THE VORTICAL QUARK-GLUON PLASMA

- Huge orbital angular momentum of the colliding system \succ in ultra-relatvistic HICs $\mathbf{J} \approx 10^5 10^6 \,\mathrm{h}$
- dominated by the y component perpendicular to the
 - reaction plane
- partly transferred to the plasma


P. Bozek and I. Wyskiel, Phys. Rev. C 81, 054902 (2010) asymmetry in local participant density from forward and backward going nuclei

$$\rho(x_{\perp},\eta_s) = \rho_0 \frac{W(x_{\perp},\eta_s)}{W(0,0)} \exp\left[-\frac{(|\eta_s| - \eta_{s0})^2}{2\sigma_{\eta}^2} \theta(|\eta_s| - \eta_{s0})\right]$$
$$W(x_{\perp},\eta_s) = 2\left(N_A(x_{\perp})f_-(\eta_s) + N_B(x_{\perp})f_+(\eta_s)\right)$$
$$f_+(\eta_s) = f_-(-\eta_s) = \begin{cases} 0 & \eta_s < -\eta_m \\ \eta_s + \eta_m & -\eta_m \le \eta_s \le \eta_m \\ 1 & \eta_s > \eta_m \end{cases}$$

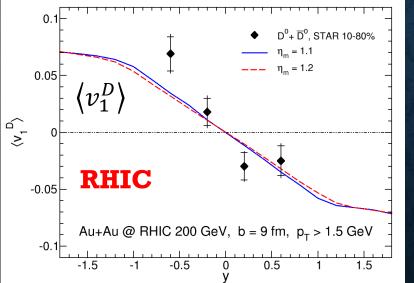
tilted initial conditions for the QGP evolution

huge vorticity in agreement with Λ polarization studies

negative slope of charged particle $v_1(\eta)$

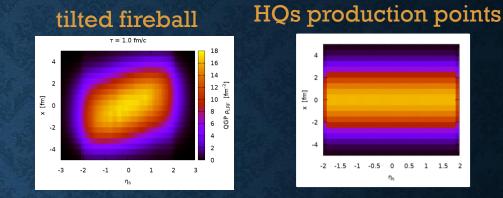
L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

8

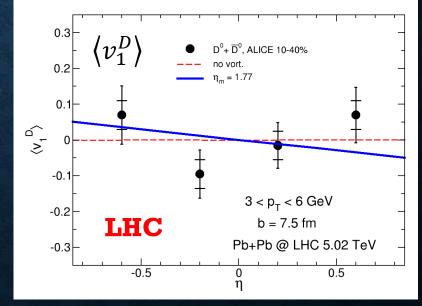

DIRECTED FLOW OF NEUTRAL D MESONS

Excellent qualitative prediction with LangevinV approach $dv_1^D/dy \approx 0.02-0.04$ ($\approx 10-15$ times larger than light charged) S. Chatterjee and P. Bozek, Phys. Rev. Lett. 120, 192301 (2018)

RHIC ENERGY


EXP: $dv_1^D/dy = -0.080 \pm 0.017 (stat) \pm 0.016 (syst)$ about 30 times larger than that of kaons TH: $dv_1^D/dy = -0.065 (25-30 \text{ times larger than ch.})$

relativistic BM equations for both QGP and HQs

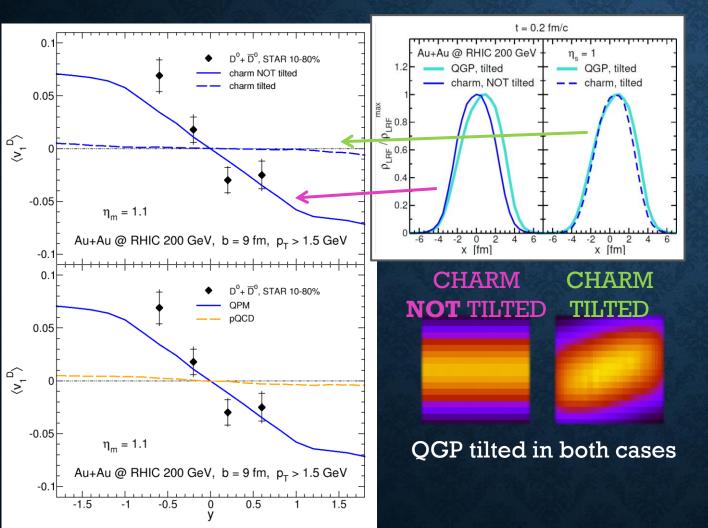

Exp. data: ALICE Collaboration, Phys. Rev. Lett. 125, 022301 (2020)

Exp. data: STAR Coll., Phys. Rev. Lett., 123 (2019) 162301

LHC ENERGY

the slope of $\langle v_1^D \rangle$ is ~ 50 times smaller than that at RHIC (in line with model predictions) and is consistent with 0

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)


9

ORIGIN OF D-MESON DIRECTED FLOW

 \mathbf{v}_{l} (HQs) \gg \mathbf{v}_{l} (QGP)

origin of the large directed flow of HQs different from the one of light particles

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

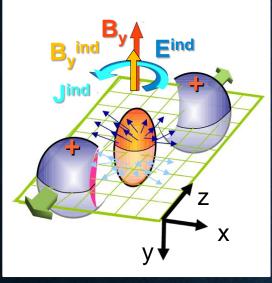
longitudinal asymmetry leads to pressure push of the bulk on the HQs

ORIGIN OF D-MESON DIRECTED FLOW

 \mathbf{v}_{l} (HQs) \gg \mathbf{v}_{l} (QGP)

origin of the large directed flow of HQs different from the one of light particles

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

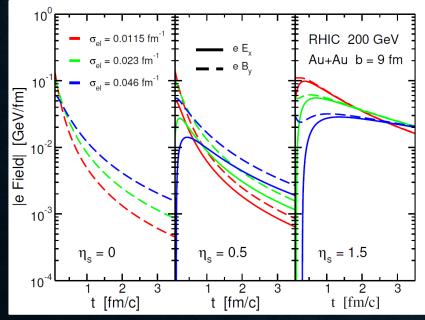

longitudinal asymmetry leads to pressure push of the bulk on the HQs

effective because the HQ interaction in QGP is largely non-perturbative

> Similar conclusions with **POWLANG** approach A. Beraudo et al., JHEP 05, 279 (2021)

strict connection between the magnitude of the *D*-meson v_1 and the HQ diffusion coefficient

ELECTROMAGNETIC (EM) FIELDS IN HICS


Huge magnetic field in the overlap area up to eB ≈ 5-50 m_π²
> mainly produced by spectators protons
> dominated by the y component
> intense electric field generated by Faraday induction
> charged currents induced in the conducting QGP generates a magnetic field pointing towards the initial one

external charge and current produced by a point-like charge in longitudinal motion

 $\rho = \rho_{ext} \qquad J = J_{ext} + J_{ind}$ $\rho_{ext} = e\delta(z - \beta t)\delta(x_{\perp} - x'_{\perp})$ $J_{ext} \neq \hat{z}\beta e\delta(z - \beta t)\delta(x_{\perp} - x'_{\perp})$

 $J_{ind} = \sigma_{el} E$

induced current from Ohm's law

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

Maxwell equations can be solved analytically for a medium with **constant electric conductivity**

K. Tuchin, Adv. High Energy Phys. 2013, 1 (2013) U. Gursoy, D. Kharzeev, K. Rajagopal, Phys. Rev. C 89, 054905 (2014)

 $p^{\mu}\partial_{\mu}f(x,p) + qF_{ext}^{\mu\nu}p_{\nu}\partial_{\mu}^{p}f(x,p) = \mathcal{C}[f]$

BM eq. with EM interaction term

EMF AND DIRECTED FLOW

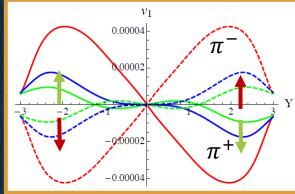
Z

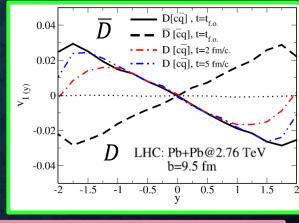
The huge EM fields induce a splitting in the DIRECTED FLOW of particles with the same mass and opposite charge

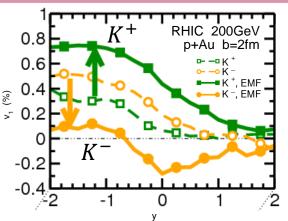
 $\Delta v_1 = v_1^+ - v_1^-$

 F_E^+

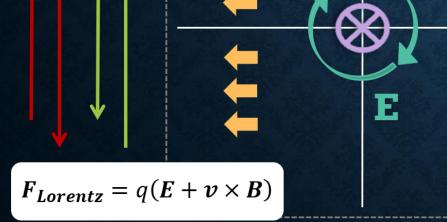
 F_{R}^{+}


n

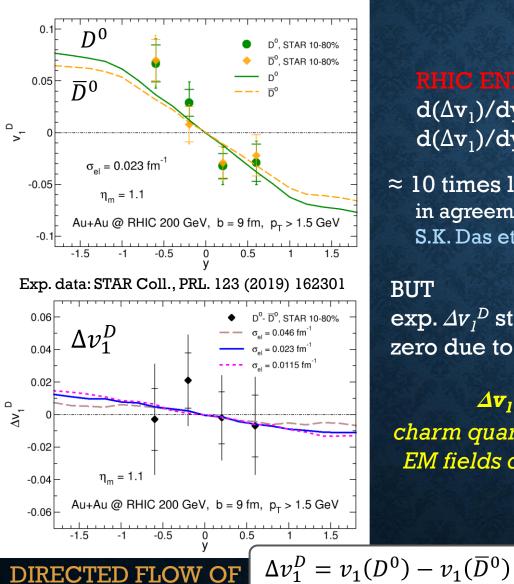

 F_B^-



Av₁ of heavy mesons in AA: O(10⁻²)
 S.K. Das et al., Phys. Lett. B 768, 260 (2017)


△v₁ of light mesons in pA: O(10⁻²)
 L. Oliva et al., Phys. Rev. C 101, 014917 (2020)

13


L. Oliva, Eur. Phys. J. A 56, 255 (2020) A. Dubla, U. Gursoy and R. Snellings, Mod. Phys. Lett. A 35, 2050324 (2020)

X

R

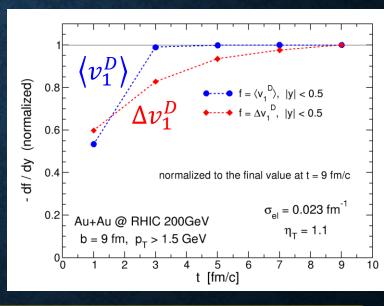
DIRECTED FLOW IN A+A AT RHIC ENERGY

L. Oliva, S. Plumari and V. Greco, JHEP 05, 034 (2021)

NEUTRAL D MESONS

The electromagnetic fields induce a large splitting in the directed flow of HEAVY QUARKS

 $d(\Delta v_1)/dy|_{exp} = -0.011 \pm 0.024(stat) \pm 0.016(syst)$ $d(\Delta v_1)/dy|_{th} = -0.01$


 \approx 10 times larger than charged in agreement with S.K. Das et al., Phys. Lett. B 768, 260 (2017)

BUT

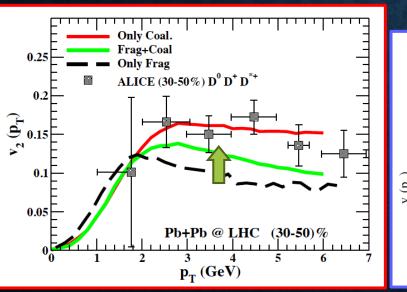
exp. Δv_1^D still consistent with zero due to the large errors

 $\Delta \mathbf{v}_1 (\mathbf{HQ}) \gg \Delta \mathbf{v}_1 (\mathbf{QGP})$ charm quarks are more sensitive to the EM fields due to the early production

SLOPE TIME EVOLUTION

 v_1^D more sensitive to the early QGP evolution when T is higher, while v_2^D probes more $T \sim T_c$ \rightarrow include v_1^D in Bayesian fits

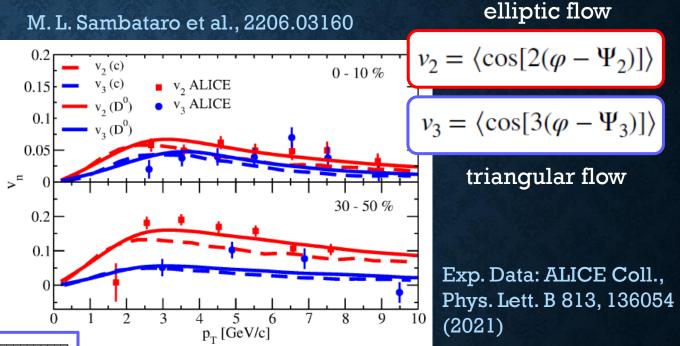
EVENT-BY-EVENT FLUCTUATIONS


Event-by-event fluctuations in the initial nucleon positions

 ϵ_2

 ϵ_3

nth-order spatial eccentricities


$$\epsilon_n = \frac{r_{\perp}^n \cos[n(\phi - \Psi_n)]}{r_{\perp}^n}$$
$$\Psi_n = \frac{1}{n} \arctan \frac{r_{\perp}^n \sin(n\phi)}{r_{\perp}^n \cos(n\phi)}$$
$$r_{\perp} = \sqrt{x^2 + y^2} \quad \phi = \arctan(y/x)$$

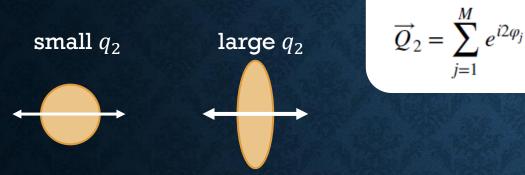
F. Scardina et al., Phys. Rev. C 96, 044905 (2017) (LHC: Pb-Pb @ 5.02 TeV) (0,15) (---) Coal. only (---) Fragm. only (--) Fragm. only (--) Coal. + Fragm. (--) Coal. + Fr

S. Plumari et al.,

Phys. Lett. B 805, 135460 (2020)

D-MESON v_2 AND v_3

- □ v₂ larger in more peripheral collisions
 → mainly generated by the geometry of overlap region
- □ v_3 not much sensitive to the collision centrality → mainly driven by the fluctuations of the triangularity of overlap region

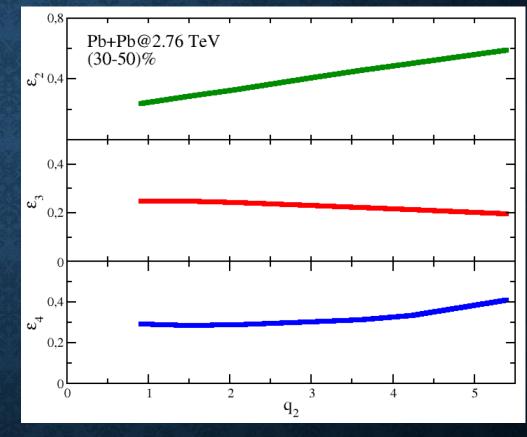

Coalescence increases v_2 and v_3 at $p_T > 2$ GeV

EVENT-SHAPE ENGINEERING (ESE)

 $q_2 = |\vec{Q}_2| / \sqrt{M}$

ESE technique: selection of events with same centrality but different average bulk flow

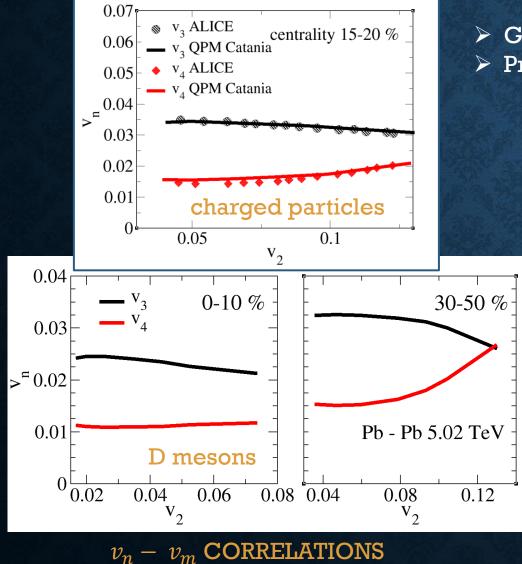
on the basis of the magnitude of the 2° -order harmonic reduced flow vector q_2



 $v_2 \propto \epsilon_2, v_3 \propto \epsilon_3$ for small values of η/s \downarrow access to the initial fireball geometry small/large $q_2 \rightarrow$ small/large ϵ_2

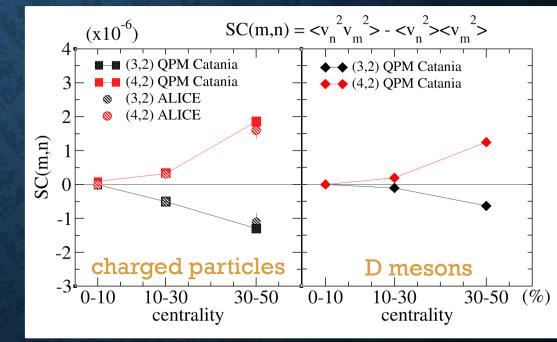
Increasing interest on studying observables with multi-differential methods based on event shape → Transverse spherocity analysis in small systems L. Oliva, W. Fan, P. Moreau, S.A. Bass and E. Bratkovskaya, 220404194

M. L. Sambataro et al., 2206.03160


SPATIAL ECCENTRICITIES

Anti-correlation between ε_2 and ε_3 Non-linear correlation between ε_2 and ε_4

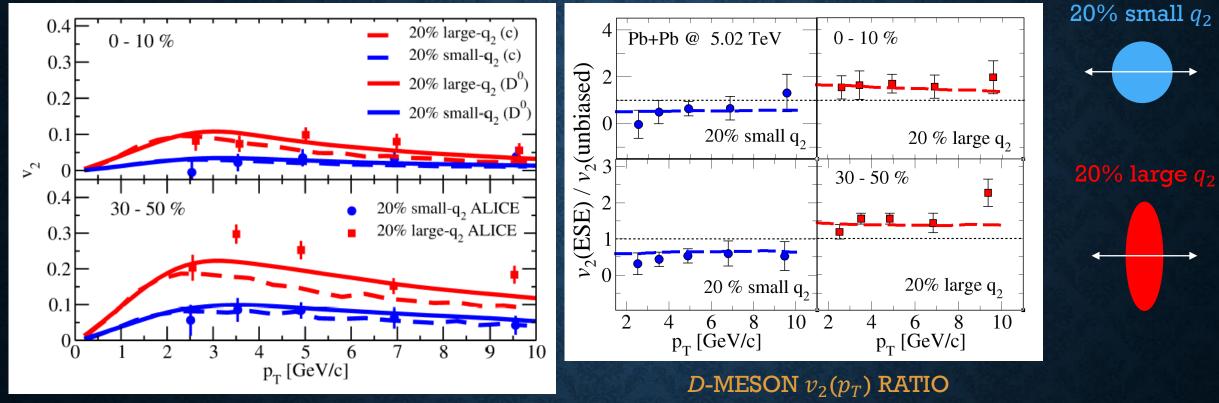
ESE: $v_n - v_m$ **CORRELATIONS**


Exp. Data: S. Mohapatra, Nucl. Phys. A 956, 59 (2016)

Correlations between ϵ_n and ϵ_m in the initial geometry leads to correlations between v_n and v_m

Good description of experimental data for charged particles
 Prediction of comparable *D*-meson correlations w.r.t. bulk

Exp. data: ALICE Coll., Phys. Lett. B 818, 136354 (2021)


SYMMETRIC CUMULANT CORRELATOR

Same approach and $D_s(T)$ describing $R_{AA}(p_T)$ & $v_2(p_T)$

M. L. Sambataro et al., 2206.03160

ESE: q_2 -SELECTED ELLIPTIC FLOW

Exp. Data: ALICE Collaboration, Phys. Lett. B 813, 136054 (2021)

 q_2 -SELECTED D-MESON $v_2(p_T)$

 $v_2 \text{ (small } q_2) < v_2 \text{ (unbiased)}$ $v_2 \text{ (large } q_2) > v_2 \text{ (unbiased)}$ about 50% difference between q_2 -selected and unbiased events in both centrality class with no transverse momentum dependence \Rightarrow ESE selection related to a global property of the events

> Same approach and $D_s(T)$ describing $R_{AA}(p_T)$ & $v_2(p_T)$ M. L. Sambataro et al., 2206.03160

EXTENSION TO BOTTOM DYNAMICS

CHARM vs BOTTOM FLOW COEFFICIENTS

- - v_2 CHARM

v₃ CHARM

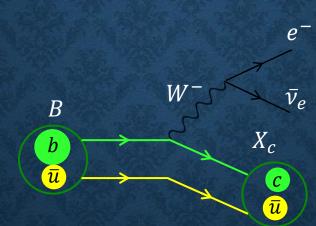
- v₂ BOTTOM

v₂ BOTTOM

8

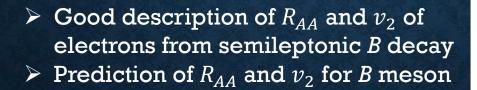
0.2

0.15


0.05

• >^{= 0.1}

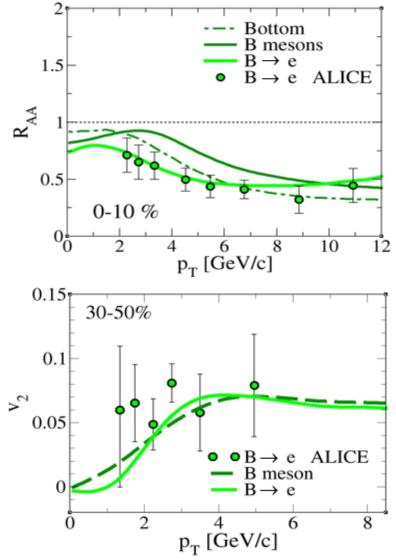
30-50%


Pb + Pb 5.02 TeV

substantial v_2 and v_3 of bottom quarks though smaller than that of charm but still

Exp. data from talk of

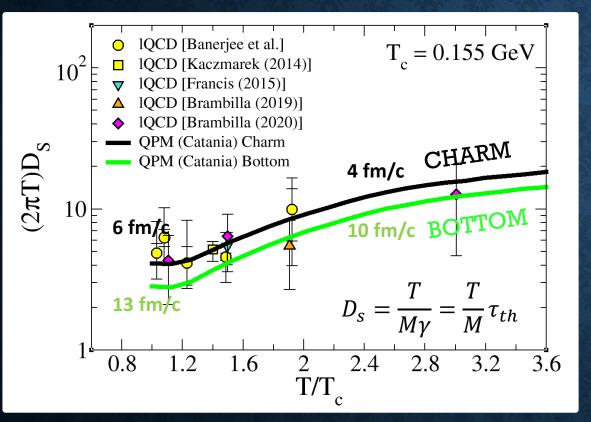
R. Arnaldi at HP2020



indication for a strong coupling of bottom quarks with collectively expanding bulk

 p_{T} [GeV/c]

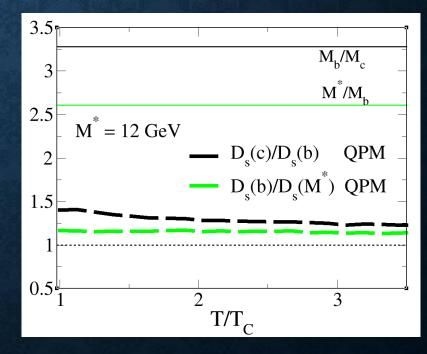
M.L. Sambataro et al., in preparation


NUCLEAR MODIFICATION FACTOR

ELLIPTIC FLOW

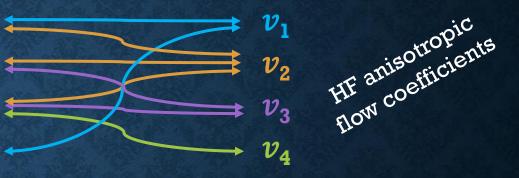
BOTTOM SPATIAL DIFFUSION COEFFICIENT

Results from $R_{AA}(p_T)$ and $v_2(p_T)$ of B mesons


CHARM vs BOTTOM SPATIAL DIFFUSION COEFFICIENT

- > In QPM approach $D_s(c)$ is 30-40% larger than $D_s(b)$
- Bottom quarks expected to be fully thermalized @ FCC

M.L. Sambataro et al., in preparation


□ D_s is ideally M independent (M → ∞) since from kinetic theory: $\tau_{th}^b / \tau_{th}^c \approx \gamma_c / \gamma_b \approx M_b / M_c$

□ D_s is a measure of thermalization time: $\tau_{th} \simeq 1.3 M \frac{2\pi T D_s}{(T/T_c)^2} \text{ fm/}c$

CONCLUSIONS

Full Boltzmann transport approaches for the description of HQ dynamics in relativistic heavy-ion collisions

QPM for non-perturbative HQ interaction in QGP coalescence plus fragmentation hadronization scheme initial-state fluctuations

electromagnetic and vortical fields

- ✓ The D^0 -meson v_1 gives information on the transport properties of the hot QCD matter: magnitude associated with the HQ diffusion coefficient and splitting connected to the QGP electric conductivity
- ✓ For D mesons v_1 is more sensitive to the early QGP evolution when T is higher, while v_2 probes more $T \sim T_c$. Inclusion in Bayesian fit and for $D_s(T)$ estimate?
- ✓ Spatial diffusion coefficient $D_s(T)$ that reproduces *D*-meson R_{AA} and v_2 gives correct predictions for v_3 and q_2 -selected anisotropic coefficients
- ✓ Prediction for significant $v_n v_m$ correlation of *D* mesons, comparable to that of bulk particles
- \checkmark Indication for a strong coupling of bottom quarks with the collectively expanding bulk

Thank you for your attention!