Beauty production in heavy-ion collisions with ALICE at the LHC

Stefano Politanò on behalf of the ALICE Collaboration Politecnico and INFN Torino

Heavy flavours in the QGP

S. Politanò (PoliTO) stefano.politano@cern.ch

- Quantum chromodynamics calculations on lattice predict phase transition from ordinary nuclear matters to colour-deconfined medium: quark-gluon plasma (QGP)
 - ultrarelativistic heavy-ion collisions
 - high energy-density ε >15 GeV/fm³

- Heavy flavours (i.e. b and c quarks) produced in hard scattering processes during first stages of the collision
 - T_b < T_c < T_{QGP}~ 1 fm/c Novak, J.: PRC 89 034906 (2014)
 - probe the full system evolution

Heavy flavours interaction in the QGP

- HF propagate in the QGP with a Brownian motion
 - interact with medium constituents
 - lose energy via elastic collisions and radiative processes
 - ➡ in-medium energy-loss mass dependence
 - heavy-quark thermalisation in the QGP?

Heavy flavours hadronisation in the QGP

- HF hadronisation in the QGP
 - Fragmentation ($D_{q \rightarrow h}(z_q, Q^2)$)
 - ➡ partons energy-loss traversing QGP modifies z_q taken by the hadron

→ partons sharing velocity/position recombine into hadrons

➡ partons sharing velocity/position recombine into hadrons

Analysis strategy: beauty-decay electrons

- Large BR in semileptonic decay
 - $b \rightarrow e + X (\sim 10\%)$, $b \rightarrow c \rightarrow e + X (\sim 10\%)$
- longer lifetime than c-quark and other electron sources
 - $T_{b} \sim 500 \,\mu\text{m/c}; T_{c} \sim 60-300 \,\mu\text{m/c}$
 - larger impact parameter (d₀) w.r.t primary
 vertex
- yield obtained with template fit on impact parameter distributions

Analysis strategy: non-prompt D mesons (D^0 , D_s)

- Large amount of combinatorial background
 - Machine Learning (ML) multiclass classification to enhance b → D contribution and reject combinatorial background
 - ➡ Signal from invariant mass fit
 - b → D fraction obtained via data-driven approach based on ML-based selection variation

Martin Andreas Volkl

14 Jun 2022, 11:50

• b-quark R_{AA} can be studied via leptonic and hadronic decays

- beauty quark $R_{\Delta\Delta}$ suppression
 - Hint of $R_{\Delta\Delta}$ (charm-hadron) < $R_{\Delta\Delta}$ (beauty-hadron) at low p_{T}

Non-prompt D⁰ nuclear modification factor (R_{AA})

- R_{AA} (non-prompt D) > R_{AA} (prompt D) at intermediate p_T
 - integrated R_{AA} :

 R_{AA}^{prompt} (0-10%) = 0.689 ± 0.054 (stat.)^{+0.104}_{-0.106}(syst.)

```
R_{AA}^{\text{non-prompt}} (0-10%) = 1.00 ± 0.10
(stat.) ± 0.15 (syst.) _{-0.09}^{+0.08} (extr.) ± 0.02
(norm.)
```

- compatible within less than 1.5σ
 - different shadowing or hadronisation via coalescence?

Non-prompt D⁰: arXiv: 2202.00815 Prompt D⁰: JHEP 01 (2022) 174

Non-prompt over prompt $D^0 R_{AA}$ ratio

*R*_{AA} (non-prompt D) / *R*_{AA} (prompt D) ratio comparison with models

ALI-PUB-501659

Non-prompt over prompt $D^0 R_{AA}$ ratio

- R_{AA} (non-prompt D) / R_{AA} (prompt D) ratio comparison with models
 - both collisional and radiative energy loss mechanisms important to describe data
 - low p_T (< 5 GeV/c): pattern hints difference in shadowing / flow / coalescence
 - − high p_T (> 5 GeV/c): 3.9σ above unity → beauty less suppressed than charm

Non-prompt over prompt $D^0 R_{AA}$ ratio

- R_{AA} (non-prompt D) / R_{AA} (prompt D) ratio comparison with models
 - both collisional and radiative energy loss mechanisms important to describe data
 - low p_T (< 5 GeV/c): pattern hints difference in shadowing / flow / coalescence
 - − high p_T (> 5 GeV/c): 3.9σ above unity → beauty less suppressed than charm
- Testing LGR ingredients effect
 - "valley" structure $p_T < 5 \text{ GeV/}c$
 - charm coalescence (iv)
 - enhancement for $p_{T} > 5 \text{ GeV/}c$
 - mass dependent quark in-medium energy loss effect (i)

- Central collisions (0-10%)
 - central values higher w.r.t those of prompt D_s , and non-prompt $D^0 R_{AA}$ for $p_T < 6$ GeV/c, though compatible within uncertainties
 - interplay of different energy loss and recombination btw. charm and beauty

• Central collisions (0–10%)

Non-prompt $D_{S}R_{AA}$

- central values higher w.r.t those of prompt D_s , and non-prompt $D^0 R_{AA}$ for $p_T < 6$ GeV/c, though compatible within uncertainties
 - interplay of different energy loss and recombination btw. charm and beauty

- Semicentral collisions (30-50%)
 - no sizeable medium-induced effect

Non-prompt $D_{s} R_{AA}$ ratios

S. Politanò (PoliTO) stefano.politano@cern.ch

15/19

- Non-prompt/prompt $R_{AA} D_s$ and non-prompt $R_{AA} D_s / D^0$ show hint of enhancement
 - $1.6\sigma (1.7\sigma)$ at $4 < p_T < 12 \text{ GeV/} c \text{ in } 0-10\%$
 - ➡ coalescence + strangeness enhancement
 - TAMU qualitatively describes the result in 0–10%

Non-prompt $D^0 v_2$

- Non-prompt D^0 show non-zero v_2
 - 2.7 σ significance for 2 < p_T < 12 GeV/c
 - beauty partially thermalizes in the medium and/or recombines with light quarks
 - 3.2 σ btw non-prompt D⁰ and prompt non-strange D meson in 2 < p_T < 8 GeV/c
 - charm and beauty quarks participate
 differently to collective motion

ALI-PREL-502672

Beauty elliptic flow v_2

- Non-prompt D⁰ show non-zero v₂
 - 2.7 σ significance for 2 < p_T < 12 GeV/c
 - beauty partially thermalizes in the medium and/or recombines with light quarks
 - 3.2 σ btw non-prompt D⁰ and prompt non-strange D meson in 2 < p_T < 8 GeV/c
 - charm and beauty quarks participate differently to collective motion
 - Model describe data within uncertainties
 - → compatible b → e and non-prompt $D^0 v_2$

Constrain of beauty spatial diffusion coefficient

Langevin: S.Q Li et al., EPJC 81 (2021) 11, 1035

- Constrain b-quark spatial diffusion coefficient comparing v_2 and R_{AA} simultaneously
 - More precise measurements of exclusive beauty decay needed

Summary

- Beauty quarks undergo energy loss in the medium → important constraint of mass dependence energy loss
- Measurements described by models that include collisional and radiative energy loss
- Strange non-prompt D meson R_{AA} provides insights into beauty quarks hadronisation via coalescence
- Different non-prompt and prompt D⁰ v₂
 - different degree of participation to collective motion and hadronisation between charm and beauty
- Beauty-strange meson and beauty-baryon production and azimuthal anisotropy measurements in Run 3

ADDITIONAL SLIDES

Analysis strategy: beauty-decay electrons

AT

M

- v_2 measured with the Event-Plane (EP) method
 - computation of event-plane angle

$$\psi_{n} = \frac{1}{n} \tan^{-1} \left(\frac{Q_{n,y}}{Q_{n,x}} \right) \quad \text{where} \quad \mathbf{Q}_{n} = \left(\sum_{k=0}^{N_{\text{tracks}}} \cos(n\varphi_{k}), \sum_{k=0}^{N_{\text{tracks}}} \sin(n\varphi_{k}) \right)$$

- Yield extracted:
 - in-plane ((7π/4, π/4] U (3π/4,5π/4])
 - out-of-plane ((π/4, $3 \pi/4$] U ($5\pi/4$, $7\pi/4$])

$$v_2 = \frac{\pi}{4R_2} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}$$

Analysis strategy: non-prompt D mesons (D^0 , D_s)

- Large amount of combinatorial background
- Machine Learning (ML) multiclass classification to enhance b → D contribution and reject combinatorial background
 - ➡ Signal from invariant mass fit
 - b → D fraction obtained via data-driven approach based on ML-based selection variation
- $v_2^{\text{non-prompt}}$ obtained by linear fitting of $v_2^{\text{obs.}}$ vs. $f_{\text{non-prompt}}$, and extrapolate to $f_{\text{non-prompt}} = 1$

Data driven method for D meson fraction

S. Politanò (PoliTO) stefano.politano@cern.ch

• Define *n* sets of ML-based selections with different prompt

and non-prompt D-meson contributions

Data driven method for D meson fraction

- Define *n* sets of ML-based selections with different prompt and non-prompt D-meson contributions
 - For each ML-based selection raw yield and efficiencies are related to the corrected yields of prompt and non-prompt D mesons

$$\epsilon_{ ext{P}}^{i} \cdot N_{ ext{P}} + \epsilon_{ ext{NP}}^{i} \cdot N_{ ext{NP}} = Y^{i}$$

- overdetermined algebraic system obtained
- solvable in approximated way
- → $f_{\rm NP}$ obtained from the approximated solution

 $\frac{\varepsilon_{\rm NP}^i N_{\rm NP}}{\varepsilon_{\rm ND}^i + \varepsilon_{\rm D}^i N_{\rm NP}}$

- R_{AA} (non-prompt D) > R_{AA} (prompt D)
 - in-medium mass-dependent energy loss
 - → dead cone effect: gluon radiation
 suppressed for small angles (ϑ < m_a/E)
 - direct observation of dead cone effect
 with D⁰-tagged jets in pp collisions

higher mass parton

ALICE in Run 3... and beyond

- ALICE upgrade for LHC Run 3 and 4 crucial for HF
 - increase collected Pb-Pb luminosity by more than one order of magnitude
 - new silicon Inner Tracking System (ITS)
 - → Run 3: ITS2 (TDR: CERN-LHCC-2013-024)
 - ➡ Run 4: ITS3 (CERN-LHCC-2019-018; LHCC-I-034)

S. Politanò (PoliTO)

stefano.politano@cern.ch

27/19

I TCF