Beauty production in heavy-ion collisions with ALICE at the LHC

Stefano Politanò on behalf of the ALICE Collaboration
Politecnico and INFN Torino
Heavy flavours in the QGP

- Quantum chromodynamics calculations on lattice predict phase transition from ordinary nuclear matters to colour-deconfined medium: quark–gluon plasma (QGP)
 - ultrarelativistic heavy-ion collisions
 - high energy-density $\varepsilon > 15$ GeV/fm3

- Heavy flavours (i.e. b and c quarks) produced in hard scattering processes during first stages of the collision
 - $\tau_b < \tau_c < \tau_{QGP} \sim 1$ fm/c
 - probe the full system evolution

Heavy flavours interaction in the QGP

- HF propagate in the QGP with a Brownian motion
 - interact with medium constituents
 - lose energy via elastic collisions and radiative processes
 → in-medium energy-loss mass dependence
 - heavy-quark thermalisation in the QGP?
Heavy flavours hadronisation in the QGP

- **HF hadronisation in the QGP**
 - **Fragmentation** \((D_{q\rightarrow h}(z_q, Q^2)) \)
 - partons energy-loss traversing QGP modifies \(z_q \) taken by the hadron

- **Coalescence**
 - partons sharing velocity/position recombine into hadrons
Heavy flavours hadronisation in the QGP

- HF hadronisation in the QGP
 - Fragmentation ($D_q \rightarrow h(z_q, Q^2)$)

Beauty measurements in this talk:

Beauty decay electron ($b \rightarrow e$)

Non-prompt D ($b \rightarrow D^0, D_s^+$) in hadronic decay ($K^-\pi^+, K^+K^-\pi^+$)

- 2015 Pb–Pb 5.02 TeV: $L^{int} \sim 13 \mu b^{-1}$
- 2018 Pb–Pb 5.02 TeV: (0-10%) $L^{int} \sim 130 \mu b^{-1}$
 - (30-50%) $L^{int} \sim 56 \mu b^{-1}$

⇒ partons sharing velocity/position recombine into hadrons
Analysis strategy: beauty-decay electrons

- **Large BR** in semileptonic decay
 \[b \rightarrow e + X (\sim 10\%) , \ b \rightarrow c \rightarrow e + X (\sim 10\%) \]

- longer lifetime than c-quark and other electron sources
 \[\tau_b \sim 500 \mu m/c; \ tau_c \sim 60-300 \mu m/c \]
 - larger impact parameter \(d_0\) w.r.t primary vertex

- yield obtained with **template fit on impact parameter distributions**
Analysis strategy: non-prompt D mesons (D^0, D_s)

- Large amount of combinatorial background
 - Machine Learning (ML) multiclass classification to enhance $b \to D$ contribution and reject combinatorial background
 - **Signal** from invariant mass fit
 - $b \to D$ fraction obtained via data-driven approach based on ML-based selection variation

ALICE

$0-10\% \text{ Pb-Pb, } \sqrt{s_{NN}} = 5.02 \text{ TeV}$

$D_s^+ \to \phi \pi^+ \to K^+ K^- \pi^+ \text{ and charge conj.}$

$4 < p_T < 6 \text{ GeV/c}$

$\mu = (1971 \pm 1) \text{ MeV/c}^2$

$\sigma = 10 \text{ MeV/c}^2$

$S = 789 \pm 73$

$f_{\text{non-prompt}} = 0.73 \pm 0.03 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$

Counts per 8 MeV/c2
b-quark R_{AA} can be studied via leptonic and hadronic decays

ALICE Preliminary
0–10% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

- $c, b \rightarrow e$
- $b \rightarrow c \rightarrow e$

beauty quark R_{AA} suppression

\Rightarrow Hint of R_{AA} (charm-hadron) < R_{AA} (beauty-hadron) at low p_T
Non-prompt D^0 nuclear modification factor (R_{AA})

- R_{AA} (non-prompt D) $> R_{AA}$ (prompt D) at intermediate p_T
 - integrated R_{AA}:

 \[R_{AA}^{\text{prompt}} (0–10\%) = 0.689 \pm 0.054 \]
 (stat.)$^{+0.104}_{-0.106}$ (syst.)

 \[R_{AA}^{\text{non-prompt}} (0–10\%) = 1.00 \pm 0.10 \]
 (stat.)$^{+0.15}_{-0.10}$ (syst.)$^{+0.08}_{-0.09}$ (extr.)$^{+0.02}_{-0.02}$ (norm.)
 - compatible within less than 1.5σ

 ➞ different shadowing or hadronisation via coalescence?

ALICE, Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

0–10%, $|y| < 0.5$

- blue: non-prompt D^0
 - red: prompt D^0

open markers: p_T extrapolated pp reference

NEW

S. Politanò (PoliTO)
stefano.politano@cern.ch

SQM 2022, Busan 14/06/2022
Non-prompt over prompt $D^0 R_{AA}$ ratio

- R_{AA} (non-prompt D) / R_{AA} (prompt D) ratio comparison with models

Figure Description

- **Plotted Data and Models**
 - ALICE data for Pb-Pb collisions with $\sqrt{s_{NN}} = 5.02$ TeV, $0-10\%$, $|y| < 0.5$
 - TAMU, LGR, MC@sHQ+EPOS2, CUJET3.1

- **Graph Axes**
 - p_T (GeV/c)
 - R_{AA} (non-prompt) / R_{AA} (prompt)

New Data Point

- NEW

References

- LGR: EPJC 80, no.7, (2020) 671
- TAMU: PLB 735 (2014) 445-450
- CUJET3.1: JHEP 02(2016) 169
- MC@sHQ+EPOS2: PRC 89 (2014) 014905

SQM 2022, Busan 14/06/2022

S. Politanò (PoliTO)

stefano.politano@cern.ch
Non-prompt over prompt $D^0 R_{AA}$ ratio

- R_{AA} (non-prompt D) / R_{AA} (prompt D) ratio
- comparison with models
 - both collisional and radiative energy loss mechanisms important to describe data
 - low p_T (< 5 GeV/c): pattern hints difference in shadowing / flow / coalescence
 - high p_T (> 5 GeV/c): 3.9σ above unity → beauty less suppressed than charm

Data points and model predictions for R_{AA} vs. p_T (GeV/c) are shown, with a focus on the ratio of non-prompt to prompt D^0 yield in heavy-ion collisions at a center-of-mass energy of 5.02 TeV. The plot includes contributions from various models and data sets:

- LGR: EPJC 80, no.7, (2020) 671
- TAMU: PLB 735 (2014) 445-450
- MC@sHQ+EPOS2: PRC 89 (2014) 014905

The p_T distribution is divided into two regions:
- Low p_T (< 5 GeV/c): shows a pattern that hints at differences in shadowing, flow, and coalescence mechanisms.
- High p_T (> 5 GeV/c): exhibits a 3.9σ above unity suppression pattern, indicating that beauty is less suppressed than charm.

Reference:
- S. Politano (PoliTO) stefano.politano@cern.ch
- ALICE EPJC 80 no.12, (2020) 1113
Non-prompt over prompt $D^0 R_{AA}$ ratio

- R_{AA} (non-prompt D) / R_{AA} (prompt D) ratio comparison with models
 - both collisional and radiative energy loss mechanisms important to describe data
 - low p_T (< 5 GeV/c): pattern hints difference in shadowing / flow / coalescence
 - high p_T (> 5 GeV/c): 3.9σ above unity → beauty less suppressed than charm

- Testing LGR ingredients effect
 - “valley” structure $p_T < 5$ GeV/c
 - charm coalescence (iv)
 - enhancement for $p_T > 5$ GeV/c
 - mass dependent quark in-medium energy loss effect (i)
Central collisions (0–10%)

- central values higher w.r.t those of prompt D_s,
and non-prompt $D^0 R_{AA}$ for $p_T < 6$ GeV/c, though compatible within uncertainties

→ interplay of different energy loss and recombination btw. charm and beauty
Non-prompt D_s^- R_{AA}

- Central collisions (0–10%)
 - central values higher w.r.t those of prompt D_s^+ and non-prompt $D^0 R_{AA}$ for $p_T < 6 \text{ GeV/c}$, though compatible within uncertainties
 - interplay of different energy loss and recombination btw. charm and beauty

- Semicentral collisions (30–50%)
 - no sizeable medium-induced effect
Non-prompt D_s R_{AA} ratios

- Non-prompt/prompt $R_{AA} D_s$ and non-prompt $R_{AA} D_s/D^0$ show hint of enhancement
 - 1.6σ (1.7σ) at $4 < p_T < 12$ GeV/c in 0–10%
 - \Rightarrow coalescence + strangeness enhancement
 - TAMU qualitatively describes the result in 0–10%
Non-prompt D⁰ v₂

- Non-prompt D⁰ show non-zero v₂
 - 2.7σ significance for 2 < pₜ < 12 GeV/c
 - beauty partially thermalizes in the medium and/or recombines with light quarks
- 3.2σ btw non-prompt D⁰ and prompt non-strange D meson in 2 < pₜ < 8 GeV/c
 - charm and beauty quarks participate differently to collective motion
Beauty elliptic flow v_2

- Non-prompt D0 show non-zero v_2
 - 2.7σ significance for $2 < p_T < 12$ GeV/c
 - beauty partially thermalizes in the medium and/or recombines with light quarks
 - 3.2σ btw non-prompt D0 and prompt non-strange D meson in $2 < p_T < 8$ GeV/c
 - charm and beauty quarks participate differently to collective motion
- Model describe data within uncertainties
 - compatible $b \rightarrow e$ and non-prompt D0 v_2
Constrain of beauty spatial diffusion coefficient

Constrain b-quark spatial diffusion coefficient comparing v_2 and R_{AA} simultaneously

- More precise measurements of exclusive beauty decay needed
Summary

- Beauty quarks undergo **energy loss in the medium** → important constraint of mass dependence energy loss
- Measurements described by models that include **collisional and radiative energy loss**
- **Strange non-prompt D meson** R_{AA} provides insights into beauty quarks hadronisation via coalescence
- Different non-prompt and prompt $D^0 v_2$
 - different degree of **participation to collective motion** and hadronisation between charm and beauty
- Beauty-strange meson and beauty-baryon production and azimuthal anisotropy measurements in **Run 3**
ADDITIONAL SLIDES
Analysis strategy: beauty-decay electrons

- v_2 measured with the Event-Plane (EP) method

 - computation of event-plane angle
 \[\psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_{n,y}}{Q_{n,x}} \right) \]
 where
 \[Q_n = \left(\sum_{k=0}^{N_{\text{tracks}}} \cos(n\varphi_k), \sum_{k=0}^{N_{\text{tracks}}} \sin(n\varphi_k) \right) \]

 - Yield extracted:
 - in-plane ($(7\pi/4, \pi/4] \cup (3\pi/4, 5\pi/4]$)
 - out-of-plane ($(\pi/4, 3\pi/4] \cup (5\pi/4, 7\pi/4]$)

 \[v_2 = \frac{\pi}{4R_2} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}} \]
Analysis strategy: non-prompt D mesons (D^0, D_s)

- Large amount of combinatorial background

 - Machine Learning (ML) multiclass classification to enhance $b \to D$ contribution and reject combinatorial background

 - **Signal** from invariant mass fit

 - **$b \to D$ fraction** obtained via data-driven approach based on ML-based selection variation

 - $v_2^{\text{non-prompt}}$ obtained by linear fitting of $v_2^{\text{obs.}}$ vs. $f_2^{\text{non-prompt}}$, and extrapolate to $f_2^{\text{non-prompt}} = 1$

ALICE Preliminary

30–50% Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

$D^0 \to K^- \pi^+$ and charge conj.

$3 < p_T < 4$ GeV/c
Data driven method for D meson fraction

- Define n sets of ML-based selections with different prompt and non-prompt D-meson contributions

![Graph showing Acceptance x efficiency vs. ML based selection]

Non-prompt D

Prompt D

ALICE Performance

pp, $\sqrt{s} = 5.02$ TeV

$8 < p_T < 10$ GeV/c

JHEP 05 (2021) 220
Define \(n \) sets of ML-based selections with different prompt and non-prompt D-meson contributions

For each ML-based selection raw yield and efficiencies are related to the corrected yields of prompt and non-prompt D mesons

\[\epsilon^i_P \cdot N_P + \epsilon^i_{NP} \cdot N_{NP} = Y^i \]

- overdetermined algebraic system obtained
- solvable in approximated way
- \(f_{NP} \) obtained from the approximated solution

\[f_{NP}^i = \frac{\epsilon^i_{NP} N_{NP}}{\epsilon^i_{NP} N_{NP} + \epsilon^i_P N_P} \]
D⁰ nuclear modification factor (R_{AA})

- R_{AA} (non-prompt D) > R_{AA} (prompt D)
 - in-medium mass-dependent energy loss
 - dead cone effect: gluon radiation suppressed for small angles ($\theta < m_q/E$)
 - direct observation of dead cone effect with D⁰-tagged jets in pp collisions

ALICE, Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

- 0–10%, $|y| < 0.5$
 - blue: non-prompt D⁰
 - red: prompt D⁰

open markers: p_T, extrapolated pp reference

Non-prompt D⁰: arXiv: 2202.00815
Prompt D⁰: JHEP 01 (2022) 174

Antonio Carlos Oliveira Da Silva
14 Jun 2022, 14:20
Time Projection Chamber:
- Track reconstruction
- Particle Identification (PID) via specific energy loss

Time Of Flight detector:
- PID via time-of-flight measurements

Electromagnetic Calorimeter
- PID via energy deposited
- Trigger

Inner Tracking System
- Track reconstruction
- Primary and decay vertices reconstruction

V0 detectors
- Trigger
- Centrality determination
- Event-plane estimation
ALICE in Run 3... and beyond

- ALICE upgrade for LHC Run 3 and 4 crucial for HF
 - increase collected Pb-Pb luminosity by more than one order of magnitude
 - new silicon Inner Tracking System (ITS)
 - Run 3: ITS2 (TDR: CERN-LHCC-2013-024)
 - Run 4: ITS3 (CERN-LHCC-2019-018 ; LHCC-I-034)
 - Run 5: all silicon ultra-light detector (ALICE 3)