Strangeness production in Au+Au collisions at $\sqrt{s_{NN}} = 19.6 \text{ GeV}$ from STAR

Sameer Aslam (*for the STAR Collaboration*) Indian Institute Of Technology Patna, India

Email: 1821ph11@iitp.ac.in

SQM 2022 The 20th International Conference on Strangeness in Qurak Matter 13-17 June 2022 Busan, Republic of Korea

Sameer Aslam

Beam Energy Scan (BES) Program At RHIC

RHIC Beam Energy Scan Program

- Study of QCD phase diagram.
- Search of QCD critical point
- > Search for the first order phase transition

```
BES-I \sqrt{s_{NN}} = 62.4,39,27,19.6,14.5,11.5,7.7 \text{ GeV}
```

```
BES-II
```

```
\sqrt{s_{NN}} = 54.4,27,19.6,17.3,14.6,11.5,9.2,7.7 \text{ GeV}
(collider mode)
\sqrt{s_{NN}} =
13.7,11.5,9.2,7.7,7.2,6.2,5.2,4.5,3.9,3.5,3.2,3.0 GeV
(FXT)
```


- Searches for the QCD critical point and the onset of deconfinement are the main motivation of the beam energy scan program at RHIC
- Strange hadrons (Λ, Ξ, Ω) are excellent probe for identifying the phase bounday and the onset of deconfinement.

The STAR Detector

iTPC upgrade

Particle Identification:

- better momentum resolution
- □ better dE/dx resolution
- improved acceptance $|\eta| < 1.0 \rightarrow |\eta| < 1.5$

Strange hadrons reconstruction:

 $\Box \quad \text{lower } p_T \text{ acceptance and} \\ \text{broader rapidity acceptance}$

The Solenoidal Tracker At RHIC (STAR) consists of several sub-detectors:

- **Tracking:** Time Projection Chamber (TPC)
- > Particle Identification: Time Projection Chamber and Time Of Flight (TOF)

Sameer Aslam

3/5

Analysis Technique

Decay topology of $\Lambda(\bar{\Lambda})$

Raw yield extraction

 $\succ \ \Lambda(\bar{\Lambda}) \longrightarrow p(\bar{p}) + \pi^- \ (\pi^+)$

Fitted with double Gaussian and second order polynomial.

$$a_0 + a_1 + a_2 x^2 + \frac{Y_1}{\sqrt{2\pi\sigma_1}} \exp\left(\frac{-(m-m_0)^2}{2\sigma_1^2}\right) + \frac{Y_1}{\sqrt{2\pi\sigma_2}} \exp\left(\frac{-(m-m_0)^2}{2\sigma_2^2}\right)$$

Reconstruction Efficiency

Efficiency Vs p_T plots for Λ and $\overline{\Lambda}$

- Efficiency drops quickly below 1 GeV/c
- > The iTPC upgrade significantly enhances the efficiency below 1 GeV/c for BES-II.

Summary:

iTPC upgrade improves the reconstruction efficiency of $\Lambda(\overline{\Lambda})$ at low p_T region.