

Production of pions, kaons, and (anti-)protons in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV at RHIC

Krishan Gopal (for the STAR Collaboration) Indian Institute of Science Education and Research (IISER) Tirupati, India

Supported in part by:

14/06/2022

STAR Presentations: https://drupal.star.bnl.gov/STAR/presentations

- Introduction
- **STAR Experiment**
- Analysis Details
- **Results**
 - p_T spectra and dN/dy
 - Particle ratios
 - Kinetic freeze-out parameters
- Summary

Outline

Introduction

to form \rightarrow Quark-Gluon Plasma (QGP)

P Sorensen, Journal of Physics: Conference Series 446, 012015 (2013)

• At very high temperature/energy density a de-confined phase of quarks and gluons is expected

RHIC BES Program:

- To search for the predicted first-order phase transition To search for a critical end point
- To investigate the expected turn-off of QGP signatures

Phase I

 $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV$

Phase II

- $\sqrt{s_{NN}} = 7.7, 9.2, 11.5, 14.6, 17.3, 19.6, 27 and 54.4 GeV$
- $\sqrt{s_{NN}} = 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, 7.7, 9.2, 11.5,$ and 13.7 GeV (FXT)

Introduction

✓ Chemical freeze-out

- Weak centrality dependence of T
- Clear centrality dependence of $\mu_{\rm B}$ at lower energies

✓ Kinetic freeze-out

- Central collisions \rightarrow lower value of T_{kin} and larger collectivity $<\beta>$
- Stronger collectivity at higher energy, even for peripheral collisions.

J. Cleymans et al., Phys. Rev. C 73, 034905 (2006)

STAR Experiment

- Large coverage $0 < \phi < 2\pi$, $|\eta| < 1.0$
- Excellent particle identification capabilities (TPC and TOF)
- Uniform acceptance at mid-rapidity

STAR, Phys. Rev. C 96, 44904 (2017)

Dataset:

- Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV (2017) \bullet
- Number of events ~513 M lacksquare
 - Particles studied : π^{\pm} , K[±], p and \bar{p} \bullet

Particle Identification

function

$$z_{i} = \ln\left(\frac{\langle dE/dx \rangle_{measured}}{\langle dE/dx \rangle_{theory}}\right)$$

m² information from TOF is used for identifying

H. Bichsel Nucl. Instr. Meth. A 562, 154 (2006)

Particles are identified using dE/dx information from TPC. <dE/dx>theory is calculated using Bichsel

g high p_T particles
$$m^2 = p^2 \left(\left(\frac{1}{\beta} \right)^2 - 1 \right)$$

Transverse Momentum Spectra

• p_T -spectra of particles ($\pi^{+,}$ K⁺, and p) show a clear particle species and centrality dependence

- $\frac{\mathrm{d}^2 N}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}} = \frac{(n-1)(n-2)}{nT[nT+m(n-2)]} \times$ Levy function :
- Double exponential : $A_1 e^{-p_T^2/T_1^2} + A_2 e^{-p_T^2}$

$$\frac{\mathrm{d}N}{\mathrm{d}y} \times p_{\mathrm{T}} \times \left(1 + \frac{m_{\mathrm{T}} - m}{nT}\right)^{-n}$$
$$-p_{T}^{2}/T_{2}^{2}$$

Transverse Momentum Spectra

• p_T -spectra of particles (π -, K⁻, and p) show a clear particle species and centrality dependence

- Levy function : $\frac{\mathrm{d}^2 N}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}} = \frac{(n-1)(n-2)}{nT[nT+m(n-2)]} \times$
- Double exponential : $A_1 e^{-p_T^2/T_1^2} + A_2$

$$\frac{\mathrm{d}N}{\mathrm{d}y} \times p_{\mathrm{T}} \times \left(1 + \frac{m_{\mathrm{T}} - m}{nT}\right)^{-n}$$
$$e^{-p_{T}^{2}/T_{2}^{2}}$$

p_T-integrated Yield (dN/dy)

• Pion (π -, π +) yields show centrality and energy dependence

p_T-integrated Yield (dN/dy)

Kaon (K⁻,K⁺) yields show centrality and energy dependence

p_T-integrated Yield (dN/dy)

- Normalized yield for proton shows a clear centrality dependence, and reaches a minimum around 54.4 GeV due to the interplay of pair production and baryon stopping
- Normalized yield for anti-proton shows a clear energy dependence

Krishan Gopal-SQM 2022

11

Centrality Dependence of Particle Ratios

- π -/ π + ratio is close to unity for all centralities

K-/K+ ratio does not depend on centrality and is lower than unity \rightarrow associate production Antiproton-to-proton ratio decreases with increasing centrality \rightarrow baryon stopping

Centrality Dependence of Particle Ratios

• K^{-}/π^{-} ratio increases with increasing energy

• K⁺/ π + ratio is maximal at 7.7 GeV and then decreases \rightarrow associated production dominance at lower energies

Centrality Dependence of Particle Ratios

- \bar{p}/π^- ratio increases with increasing beam energy
- p/π^+ ratio decreases with increasing energy \rightarrow more baryon stopping at lower energies

Energy Dependence of Particle Ratios

 Particle ratios for 54.4 GeV data are consistent with the energy dependence trend observed at AGS, SPS, RHIC, and LHC energies

Blast-Wave Model : Hydrodynamic inspired model

$$\frac{dN}{D_T dp_T} \propto \int_0^R r \, dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{kin}} \right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}} \right)$$

I_{0.} K₁: Modified Bessel functions ρ (r) = tanh⁻¹ β β = Transverse radial flow velocity T_{kin}: Kinetic freeze-out temperature

Transverse momentum spectra are fitted simultaneously with BW model to extract T_{kin} and $<\beta>$

Kinetic Freeze-out Parameters

✓ Kinetic freeze-out - T_{kin} and < β > show anti-correlation - T_{kin} and < β > for 54.4 GeV show similar trend as other RHIC energies

- Transverse momentum spectra for π^{\pm} , K[±], p and \bar{p} have been studied in Au+Au collisions at $\sqrt{s_{NN}} = 54.4 \text{ GeV}$ using STAR data
- Normalized particle yield (dN/dy)/(<N_{part}>/2) shows clear centrality and energy dependence
- Centrality dependence of particle ratios is consistent with the trend observed at other RHIC energies
- K^{-}/π^{-} , \bar{p}/π^{-} increase, whereas K^{+}/π^{+} and p/π^{+} ratios decrease with increasing energy, and are consistent with world data trend
 - T_{kin} and $<\beta>$ show anti-correlation as observed at other energies

Thank you for your attention

Backup

Transverse Momentum Spectra

• p_T -spectra of particles ($\pi^{+,}$ K⁺, and p) show a clear p_T and centrality dependence

Transverse Momentum Spectra

• p_T -spectra of anti-particles (π -, K-, and \bar{p}) show a clear p_T and centrality dependence

