SQM2022

Contribution ID: 80

Type: Talk

A multi-differential investigation of strangeness production in pp collisions with ALICE

Tuesday 14 June 2022 11:10 (20 minutes)

The ratio of strange to non-strange hadron yields increases from low-multiplicity to high-multiplicity hadronic interactions, reaching values observed in heavy-ion collisions. The ALICE experiment investigates the microscopic origin of this striking phenomenon by performing dedicated multi-differential analyses in pp collisions at $\sqrt{s} = 13$ TeV.

To separate strange hadrons produced in jets from those produced in soft processes, the angular correlation between high- $p_{\rm T}$ charged particles and strange hadrons is exploited. The near-side jet and out-of-jet yield of K_S^0 and Ξ^{\pm} are studied as a function of the charged particle multiplicity, up to values comparable to those reached in peripheral Pb-Pb collisions.

In order to disentangle initial and final state effects, a new analysis exploits the concept of the effective energy available for particle production, which is anticorrelated with the forward energy deposited in the Zero Degree Calorimeters (ZDC). (Multi-)strange hadron production is studied as a function of the charged particle multiplicity measured at midrapidity and of the forward energy detected by the ZDC.

The results suggest that soft (i.e., out-of-jet) processes are the dominant contribution to strange particle production and provide new insights on the role of initial state effects on strangeness enhancement in pp collisions.

Present via

Offline

Primary author: SCHOTTER, Romain (Centre National de la Recherche Scientifique (FR))Presenter: SCHOTTER, Romain (Centre National de la Recherche Scientifique (FR))Session Classification: PA-Light-flavor and Strangeness

Track Classification: Light-flavor and Strangeness