Constraining the $\bar{K}N$ coupled channel dynamics using femtoscopic correlations with ALICE at the LHC

Maximilian Korwieser (Technische Universität München, E62) on behalf of ALICE

SQM22: Strange Quark Matter 2022

13 — 17 June 2022
Overview $\bar{K}N$ interaction

- What is known so far …
 - use $K^- p$ as proxy for $\bar{K}N$
 - attractive strong interaction
Overview $\bar{K}N$ interaction

- What is known so far …
 - use K^-p as proxy for $\bar{K}N$
 - attractive strong interaction
 - appearance of coupled channels
Overview $\bar{K}N$ interaction

- What is known so far …
 - use K^-p as proxy for $\bar{K}N$
 - attractive strong interaction
 - appearance of coupled channels

\[
\begin{align*}
(\pi^-\Sigma^+, \pi^0\Sigma^0, \pi^+\Sigma^-) \\
\pi^0\Lambda & \quad \pi\Sigma & \quad K^-p
\end{align*}
\]

\[
E (\text{MeV}/c^2) \\
- 177 & \quad - 100
\]
Overview $\bar{K}N$ interaction

- What is known so far …
 - use K^-p as proxy for $\bar{K}N$
 - attractive strong interaction
 - appearance of coupled channels
 - Conditions
 - Close in mass
 - Matching quantum numbers

\begin{itemize}
 \item $\pi^0\Lambda$
 \item $\pi^0\Sigma$
 \item K^-p
 \item \bar{K}^0n
\end{itemize}

- 177
- 100
58

E (MeV/c^2)
Overview $\bar{K}N$ interaction

- What is known so far …
 - use K^-p as proxy for $\bar{K}N$
 - attractive strong interaction
 - dynamic generation of $\Lambda(1405)$

\[\Lambda(1405) \]

\[\pi^0 \Lambda \]

\[\pi \Sigma \]

\[K^-p \]

\[\bar{K}^0n \]

\[\Lambda(1520) \]

E (MeV/c^2):

- 177
- 100
- 27

- 58
- 234
Overview $\bar{K}N$ interaction

- What is known so far …
 - attractive interaction
 - appearance of coupled channels
 - dynamic generation of $\Lambda(1405)$

- Experimental results
 - at threshold Kaonic atoms
 - above threshold scattering experiments

$\pi^0\Lambda$ $\pi\Sigma$ $\Lambda(1405)$ K^-p \bar{K}^0n $\Lambda(1520)$

- 177 - 100 - 27 58 234

E (MeV/c2) \sqrt{s} [MeV]

Y. Ikeda et al. NPA 881 (2012)
SIDDHARTA PLB 704 (2011)
Overview $\bar{K}N$ interaction

- What is known so far …
 - attractive interaction
 - appearance of coupled channels
 - dynamic generation of $\Lambda(1405)$

- Experimental results
 - at threshold Kaonic atoms
 - above threshold scattering experiments

\[\sigma(K^-p \rightarrow K^-p) \text{ [mb]} \]

\[P_{\text{lab}} \text{ [MeV/c]} \]

$\Lambda(1520) \quad E (\text{MeV/c}^2)$

\[\bar{K}^0n \text{ cusp} \]

Y. Ikeda et al. NPA 881 (2012)
New access to $\bar{K}N$ interaction

- Close to and at threshold enables
 - fixing low-energy constants in SU(3) \(\chi \)EFT
 - quantification of coupled-channel contribution
 - falsification of current models

- New approach: Analysis of momentum correlations
 - deliver high precision data
 - sensitivity to coupling parameters
Analysis with ALICE

- Data sets (# evts)
 - **pp 13 TeV**
 (1000 M high mult.)
 - **p–Pb 5.02 TeV**
 (800 M 0–100% mult. interval)
 - **Pb–Pb 5.02 TeV**
 (65 M 60–90% cent. interval)

Direct detection of charged particles (protons, kaons) by TPC and TOF

Purity of used particles **99%**
Basics of Femtoscopy

\[C(k^*) = \int S(\vec{r}^*) \left| \psi(\vec{k}, \vec{r}^*) \right|^2 d^3 \vec{r}^* = N \frac{N_{same}(k^*)}{N_{mixed}(k^*)} \]

where

\[S(\vec{r}^*) = \frac{1}{(4\pi r_0^2)^{3/2}} \exp \left(-\frac{r_*^2}{4r_0^2} \right) \]

Schrödinger Equation for relative wavefunction

Relative momentum \(k^* = \frac{1}{2} |\vec{p}_1 - \vec{p}_2| \) and \(\vec{p}_1^2 + \vec{p}_2^2 = 0 \)

Relative distance \(r^* = \vec{r}_1^* - \vec{r}_2^* \)

Nature 588 (2020)
Femtoscopic result

New!

ALICE

\[C(k^*) \]

pp \(\sqrt{s} = 13 \text{ TeV} \)

\[K_p \oplus K^*\bar{p} \]

0.7 < \(S_T \) ≤ 1

\[n_{\text{calt}} \]

arXiv:2205.15176
Femtoscopy: Coupled Channels

\[C(k^*) = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3\vec{r}^* + \sum_j \int S_j(\vec{r}^*) \left| \psi_j(\vec{k}^*, \vec{r}^*) \right|^2 d^3\vec{r}^* \]

- Conversion weights (\(\omega\))
 - control CC contribution
 - depend on primary yield and kinematics

- System-size survey
 - study impact on correlation

\[\pi^0 \Lambda \quad \pi \Sigma \quad \Lambda(1405) \quad K^- p \quad K^0 n \]

\(r_0 = 1 \text{ fm} \)

J. Haidenbauer NPA 981 (2019)
Y. Kamiya et al. PRL 124 (2020)
Estimation of ω

$$C(k^*) = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3\vec{r}^* + \sum_j \omega_j \int S_j(\vec{r}^*) \left| \psi_j(\vec{k}^*, \vec{r}^*) \right|^2 d^3\vec{r}^*$$

- Calculation of expected primary yields
 - Thermal model (Thermal-FIST) [1]
 - for each collision system

- Estimate amount of pairs in FSI sensitive kinematic region ($k^* < 200 \text{ MeV}/c$)
 - Distribute particles according to Blast-wave (BW) model [2,3,4]
 - Normalize to expected yields

Pinning down the emitting source

- Universal source ansatz
- Decompose source
 - Gaussian core source driven by thermal production
 - Exponential decays of particle-specific resonances
 - fractions from thermal model
 - kinematics from transport model
- Steps to generate the sources
 - Determine core by fitting \(C(k^*) \) from \(K^+-p \) (same system and mult./cent. interval)
 - Use as input for \(K^--p \)
 - Add for each channel resonance decays (Monte Carlo procedure)
Femtoscopy results

New!

arXiv:2205.15176
Femtoscopy result (with scaling factor)

\[C(k^*) = \int S(\vec{r}^*) \left| \psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3\vec{r}^* + \sum_j \alpha_j \omega_j \int S_j(\vec{r}^*) \left| \psi_j(\vec{k}^*, \vec{r}^*) \right|^2 d^3\vec{r}^* \]
Scaling factors

- Experimental results
 - improved data situation near threshold
 - hints at revising the coupling strengths in SU(3) χEFT
 - first experimental constraint of the \bar{K}^0–n channel

New! arXiv:2205.15176
Summary & Outlook

• Measurement of the two-particle momentum correlation $K^-\text{--}p$
• High resolution of cusp structure $K^-\text{--}p \leftrightarrow \bar{K}^0\text{--}n$
• Quality data available for model tuning (SU(3) χEFT)
• Kyoto model fits:
 – scaling factor needed to accommodate data
 – necessitates revision of coupling strengths
Back-up

Content
- CC for r_core = 1.5 fm (Pb-Pb peripheral)
- Femtoscopy: Information about the source
Last scaling bin

- Prediction SU(3) χEFT
 - Gaussian $S(r^*)$ ($r_0 = 1.5$ fm)
 same for all channels
 - Weights at unity
 - Cusp still pronounced
 - non negligible contribution predicted
 - difficult to resolve with current statistics

New!
arXiv:2205.15176
Femtoscopy: Source

Source modifications

• Increase in apparent source size by short lived strongly-decaying resonances (e.g. Δ)
Femtoscopy: Source Resonances (example)

Protons

Λs

Σ^0s

<table>
<thead>
<tr>
<th>Particle</th>
<th>M_{res} [MeV]</th>
<th>τ_{res} [fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1361.52</td>
<td>1.65</td>
</tr>
<tr>
<td>Λ</td>
<td>1462.93</td>
<td>4.69</td>
</tr>
<tr>
<td>Σ^0</td>
<td>1581.73</td>
<td>4.28</td>
</tr>
</tbody>
</table>

$s = \beta \gamma \tau_{res} = \frac{p_{res}}{M_{res}} \tau_{res}$

$E(r, M_{res}, \tau_{res}, p_{res}) = \frac{1}{s} \exp\left(-\frac{r}{s}\right)$
Femtoscopy: Source

Universal source model
- r_{core} fixed for each pair based on $<m_T>$
- Particle-specific resonances are added to the core

Notice
- Small radii probe large densities

ALICE $pp \sqrt{s} = 13$ TeV
High-mult. (0–0.17% INEL > 0)
- p–p Argonne v_{18}
- Parametrization
Formula up-keep

\[S(r^*) = \frac{1}{(4\pi r_0^2)^{\frac{3}{2}}} \exp\left(-\frac{r^{2}}{4r_0^2}\right) \]

\[C_{\text{model}}(k^*) = b(k^*)[\lambda_{p\Sigma^0}C_{p\Sigma^0}(k^*) + \lambda_{p(\gamma\Lambda)}C_{p(\gamma\Lambda)}(k^*) + \lambda_{ff} + \lambda_{\tilde{p}\Sigma^0}] \]

\[C_{\text{model}}(k^*) = (a + b \cdot k^*)[1 + \lambda_{K-p}(C_{K-p}^{CC}(k^*) - 1) + \sum_{ij}\lambda_{ij}(C_{ij}(k^*) - 1)] \]

\[C(k^*) = \int S(\vec{r}^*) \left |\psi(\vec{k}^*,\vec{r}^*)\right |^2 d^3\vec{r}^* + \sum_j \alpha_j \cdot \omega_j \int S_j(\vec{r}^*) \left |\psi_j(\vec{k}^*,\vec{r}^*)\right |^2 d^3\vec{r}^* \]

\[C(k^*) = \int S(\vec{r}^*) \left |\psi(\vec{k}^*,\vec{r}^*)\right |^2 d^3\vec{r}^* + \sum_j \omega_j \int S_j (\vec{r}^*) \left |\psi_j(\vec{k}^*,\vec{r}^*)\right |^2 d^3\vec{r}^* \]