

Light-flavor hadron production

Adrian Nassirpour, for the ALICE Collaboration

- This presentation will cover:
 - Neutral meson yields as a function of p_{T} and multiplicity
 - Light-flavor particle production as a function of Unweighted Transverse Spherocity

Adrian Nassirpour, SQM 2022

2

- Light-flavor hadrons: a key tool to study hadronization
- Main focus for this presentation:
 - Light-flavor yield vs. event multiplicity.

- Light-flavor hadrons: a key tool to study hadronization
- Main focus for this presentation:
 - Light-flavor yield vs. event multiplicity.

- Light-flavor hadrons: a key tool to study hadronization
- Main focus for this presentation:
 - Light-flavor yield vs. event multiplicity.
 - Relative yield of strange hadrons to pions (S/ π).

- Light-flavor hadrons: a key tool to study hadronization
- Main focus for this presentation:
 - Light-flavor yield vs. event multiplicity.
 - Relative yield of strange hadrons to pions (S/π).
 - The average charged particlemultiplicity measured at midrapidity.

- Light-flavor hadrons: a key tool to study hadronization
- Main focus for this presentation:
 - Light-flavor yield vs. event multiplicity.
- In A-A systems, strangeness enhancement could be interpreted as a signature of the formation of a quark—gluon plasma (QGP).
 - Unresolved if this also applies to pp collisions.

 In this context, how can we improve our understanding of light-flavor hadron production?

- In this context, how can we improve our understanding of light-flavor hadron production?
 - Can these events be characterized by other properties than <dN/dη> production?

- In this context, how can we improve our understanding of light-flavor hadron production?
 - Can these events be characterized by other properties than <dN/dη> production?
 - Do ALL light-flavor particles follow the same trend?

HMPID

- A large range of subdetectors are utilized in the different measurements presented here:
 - TPC
 - Track reconstruction + PID

11

- ITS
 - Track reconstruction + midrapidity multiplicity
- TOF

Trigger Chamber • PID

La Magnet PHOS ITS TPC Adrian Nassirpour, SQM 2022

Absorber

Tracking Chambers

Dipole Magnet

ACORDE

PMD

VO

HMPID

L3 Magnet

EMCal

TOF

TRD

ALICE apparatus

PHOS ITS

TPC

- A large range of subdetectors are utilized in the different measurements presented here:
 - TPC
 - Track reconstruction + PID
 - ITS
 - Track reconstruction + midrapidity multiplicity
 - TOF
 - PID
 - PHOS

Trigger Chamber

- Neutral meson yield
- EMCal
 - Neutral meson yield

Absorber

Tracking Chambers

Dipole Magnet

ALICE apparatus

- A large range of subdetectors are utilized in the different measurements presented here:
 - TPC
 - Track reconstruction + PID
 - ITS
 - Track reconstruction + midrapidity multiplicity
 - TOF
 - PID
 - PHOS
 - Neutral meson yield
 - EMCal
 - Neutral meson yield

• V0A/V0C

• Triggering + forward-rapidity multiplicity.

- This presentation will cover:
 - Neutral meson yields as a function of multiplicity
 - Light-flavor particle production as a function of Unweighted Transverse Spherocity

Neutral meson production: analysis details

• The η and π^0 mesons are reconstructed by calculating invariant masses of photon pairs.

Neutral meson production: analysis details

• The η and π^0 mesons are reconstructed by calculating invariant masses of photon pairs.

Neutral meson production: analysis details

- The η and π^0 mesons are reconstructed by calculating invariant masses of photon pairs.
 - Final yield is extracted by combining subdetectors.

• Indications of universal scaling as a function of collision energy.

•
$$x_{\mathrm{T}} = \frac{2p_{\mathrm{T}}}{\sqrt{s}}$$

 Indications of universal scaling as a function of collision energy.

•
$$x_{\mathrm{T}} = \frac{2p_{\mathrm{T}}}{\sqrt{s}}$$

• Measurements of η and π^0 as a function of forward multiplicity

• New results suggests that η/π^0 is independent of multiplicity as a function of $p_{\rm T}$.

- New results suggests that η/π^0 is independent of multiplicity as a function of $p_{\rm T}$.
 - $p_{\rm T}$ -differential η production is not modified even in extremely large pp multiplicities.

- New results suggests that η/π^0 is independent of multiplicity as a function of $p_{\rm T}$.
 - $p_{\rm T}$ -differential η production is not modified even in extremely large pp multiplicities.
- $p_{\rm T}$ integrated double-ratio presents a suppression of η with increasing multiplicity

Outline

- This presentation will cover:
 - Neutral meson yields as a function of multiplicity
 - Light-flavor particle production as a function of Unweighted Transverse Spherocity

Strangeness enhancement in different topologies: Transverse Spherocity $S_0^{p_{\rm T}=1}$

- Categorize event into two types:
 - Jetty: Back-to-Back "jet-like" events
 - Particle production mainly driven by hard processes
 - **Isotropic:** Azimuthally isotropic events.
 - Particle production driven by multiple softer collisions.

Strangeness enhancement in different topologies: ²⁶ Transverse Spherocity $S_0^{p_T=1}$

- Categorize event into two types:
 - Jetty: Back-to-Back "jet-like" events
 - Particle production mainly driven by hard processes
 - **Isotropic:** Azimuthally isotropic events.
 - Particle production driven by multiple softer collisions.
 - These categories are defined by the bottom/top 20% $S_0^{p_{\rm T}=1}$ quantile.

$$S_0^{p_T=1} = \frac{\pi^2}{4} \min_{\hat{n}} \left(\sum_{i} \frac{|\widehat{p_{\mathrm{T},i}} \times \hat{n}|}{N_{\mathrm{trk}}} \right)$$

Multiplicity triggers for $S_0^{p_T=1}$ analysis

Multiplicity (0-10%) for spectra is measured in two rapidity regions

Forward rapidity: 2.8< η <5.1 , -3.7< η <-1.7

ALI-PREL-335032

Multiplicity triggers for $S_0^{p_T=1}$ analysis

Forward Estimator

Multiplicity (0-10%) for spectra

- is measured in two rapidity regions
- Forward rapidity: 2.8< *η* <5.1 , -3.7< *η* <-1.7

ALI-PREL-335032

Multiplicity triggers for $S_0^{p_T=1}$ analysis

Forward Estimator

Multiplicity (0-10%) for spectra

- is measured in two rapidity regions
- Forward rapidity: 2.8< *η* <5.1 , -3.7< *η* <-1.7

ALI-PREL-335032

ALICE

Multiplicity triggers for $S_0^{p_T=1}$ analysis

30

Midrapidity Estimator

Multiplicity (0-10%) for spectra

- is measured in two rapidity regions
- Forward rapidity: $2.8 < \eta < 5.1$, $-3.7 < \eta < -1.7$

ALICE

Multiplicity triggers for $S_0^{p_T=1}$ analysis

Multiplicity (0-10%) for spectra

- is measured in two rapidity regions
- Forward rapidity: $2.8 < \eta < 5.1$, $-3.7 < \eta < -1.7$

Forward Estimator

Midrapidity Estimator

p-to- π ratios as functions of $S_0^{p_T=1}$

Forward Estimator 2.8< η <5.1 $\,$, $\,$ –3.7< η <–1.7 $\,$

JETTY : RED ISOTROPIC : BLUE

p-to- π : shift of protons from low (high) $p_{\rm T}$ to high (low) $p_{\rm T}$ for isotropic (jetty) events.

Normally associated with increase (decrease) of radial flow in large systems.

ALI-PREL-334947

34

Multiplicity triggers for $S_0^{p_T=1}$ analysis

Multiplicity (0-10%) for spectra

- is measured in two rapidity regions
- Forward Rapidity: 2.8< η <5.1 , –3.7< η <–1.7
- Midrapidity: $|\eta| < 0.8$

- Takeaway messages:
 - The HM events are not a direct average of the Isotropic and Jetty event classes.
 - Instead, HM events are more similar to Isotropic events
 - This indicates that HM events are dominated by soft processes.

Outlook on low-multiplicity studies

- Run 3 analyses can be utilized to measure extremely low multiplicities:
 - $< dN/d\eta >$

Outlook on low-multiplicity studies

- Run 3 analyses can be utilized to measure extremely low multiplicities:
 - $< dN/d\eta >$
 - Neutral mesons

Outlook on low-multiplicity studies

- Run 3 analyses can be utilized to measure extremely low multiplicities:
 - $< dN/d\eta >$
 - Neutral mesons
 - Strangeness
 - Analyses currently ongoing!

Neutral meson production as a function of multiplicity:

- No significant multiplicity dependence of η/π^0 as a function of $\,p_{
 m T}$
- Integrated η/π^0 yields hint towards suppression of η at larger multiplicities

Particle Production as a function of Unweighted Transverse Spherocity:

- $S_0^{p_T=1}$ can be used to select strangeness enhanced/suppressed events
- $S_0^{p_{\rm T}=1}$ can select different physics depending on the η region
- The results suggest that high-multiplicity events are primarily dominated by soft processes.

Outlook:

- Comprehensive paper on $S_0^{p_T=1}$ under review, expected publication in the near future
- Run 3/4 will allow for differential low-multiplicity measurements

Neutral Meson Production: Analysis details

- The η and π^0 mesons are reconstructed by combining photon pairs.
 - Final yield is extracted by combining subdetectors.
- Measurements up to high- $p_{\rm T}$ (>50 GeV/c) using merged EMCal clusters.
 - Ensures a high π^0 purity (>70%)

Neutral Meson Production: Results

- New results suggests that η/π^0 is independent of multiplicity as a function of $p_{\rm T}$.
 - $p_{\rm T}$ -differential η production is not modified even in extremely large pp multiplicities.
- Double-ratio hints towards a very small effect.
 - Qualitatively well described by PYTHIA
 - Small tension at 3-5 GeV/c, could contain interesting physics.

Jet Pt Evolution

ALI-PREL-337108

Jet Pt Evolution

• $S_0^{p_T=1}$ is measured as S_0 , but only considers the angular component.

• $S_0^{p_T=1}$ is measured as S_0 , but only considers the angular component.

Identified Vs Unidentified Hadrons

- There is a non-trivial difference in the ${\rm S}_{\rm O}$ measurement for Identified and Unidentified hadrons

- Primary Unidentified hadrons enter both the yield extraction and $\,S_{O}^{}\,$
- This also applies to $\pi/K/P$
- But this does NOT apply to **E**!
- ϕ enters twice! ($K^+ K^-$)

