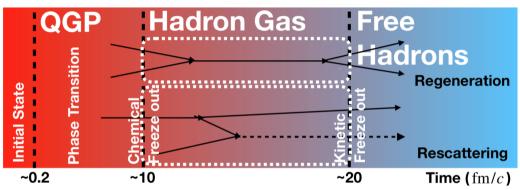


1/14

Understanding the nature of $f_0(980)$ with ALICE at the LHC

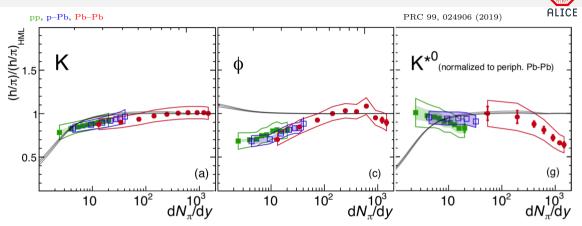
Junlee Kim On behalf of the ALICE Collaboration Jeonbuk National University, South Korea


June 14, 2022 2022 Strangeness in Quark Matter

Junlee Kim

2022 SQM 《 다 > 《 큐 > 《 클 > 《 클 > _ 클 · _ 의 < 은

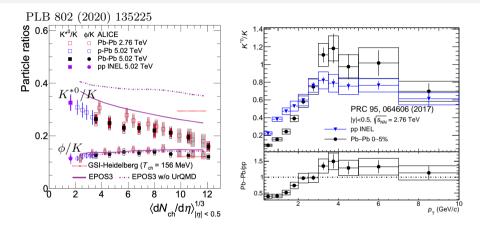
Short-lived resonances



• Resonance yields can be modified in the hadronic gas via regeneration and rescattering.

• Short-lived resonances are powerful probes to study the properties of the hadronic gas.

Particle yield ratio


- Strangeness enhancement is seen in the (K/π) and (ϕ/π) ratios.
- (K^{*0}/π) is flat with increasing multiplicity in pp and p–Pb collisions, possibly due to two competing effects.
 - Strangeness enhancement
 - Suppressions due to the short lifetime of K^{*0} ($\tau_{K^{*0}} \sim 4.2 \text{ fm/}c$) \rightarrow hint for rescattering effects

Junlee Kim

 K^{*0}/K

4/14

- Strangeness enhancement effect is not expected in (K^{*0}/K) ratio.
- Rescattering effects dominate the decreasing trend.
 - EPOS+UrQMD can qualitatively reproduce the (K^{*0}/K) ratio from small to large collision systems.
 - Strong suppression at low $p_{\rm T}$ + no suppression at high $p_{\rm T}$

Junlee Kim

$f_0(980)$ resonance

- Scalar meson whose quark content and structure are still unresolved.
 - $q\bar{q}$ state: PRD 67, 094011 (2003)
 - Tetraquark $(q\bar{q}s\bar{s})$ state: PRD 103, 014010 (2021)
 - $K\overline{K}$ molecule state: PRD 101 094034 (2020)
- Measured f₀(980) yield in hadron-hadron collisions can be largely modified because of its short lifetime $(\tau_{f_0} \sim 2-20 \text{ fm}/c)$.
- Particle yield ratios and nuclear modification factor $(Q_{\rm pPb})$ of $f_0(980)$ allow to
 - Study the hadronic gas
 - Explore internal structure of $f_0(980)$

	$ ho^0$	K^*	$f_0(980)$	ϕ
Mass (MeV/c^2)	775	892	990	1020
J^P	1^{-}	1^{-}	0^+	1-
Contents	$\frac{u\bar{u} + dd}{\sqrt{2}}$	$d\bar{s}$???	$s\bar{s}$
lifetime (fm/c)	1.3	4.2	\sim 2–20	46.2

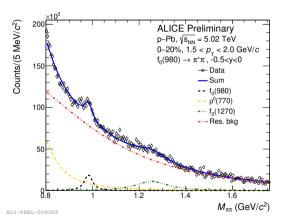
$$\begin{aligned} Q_{\rm pPb}(p_{\rm T}, {\rm cent}) &= \\ \frac{{\rm d}^2 N_{\rm pPb}^{\rm cent} / {\rm dyd} p_{\rm T}}{< T_{\rm pPb}^{\rm cent} > {\rm d}^2 \sigma_{\rm pp}^{\rm INEL} / {\rm dyd} p_{\rm T}}, \end{aligned}$$

where $\langle T_{\rm pPb}^{\rm cent} \rangle = N_{\rm coll}^{\rm cent} / \sigma_{\rm NN}$

'14

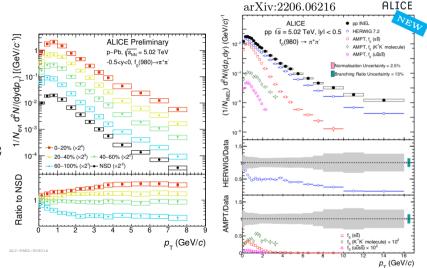
Signal extraction for $f_0(980)$

• The position of each resonance is corrected by the phase space correction,


$$PS(M_{\pi\pi}) = \frac{M_{\pi\pi}}{\sqrt{M_{\pi\pi}^2 + p_{\rm T}^2}} \exp(-\sqrt{M_{\pi\pi}^2 + p_{\rm T}^2}/T).$$

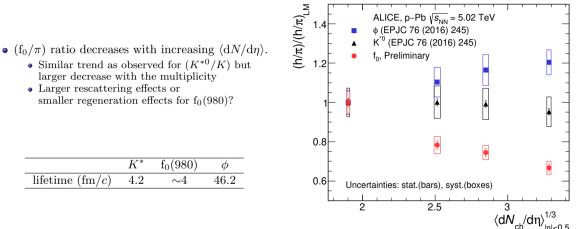
• After the combinatorial background subtraction, the residual background can be described by $f_{\rm BG}(M_{\pi\pi}) = (M_{\pi\pi} - 2m_{\pi})^n A \exp(BM_{\pi\pi} + CM_{\pi\pi}^2).$

 $\bullet\,$ In total,

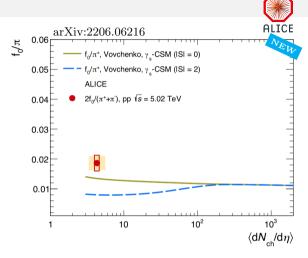

 $\frac{f(M_{\pi\pi}) = (N_{\rho} \mathrm{rBW}_{\rho^{0}}(M_{\pi\pi}) + N_{f_{0}} \mathrm{rBW}_{f_{0}}(M_{\pi\pi}) + N_{f_{2}} \mathrm{rBW}_{f_{2}}(M_{\pi\pi})) \times PS(M_{\pi\pi}) + f_{\mathrm{BG}}(M_{\pi\pi})$

• The estimated $f_0(980)$ width is 55 MeV/c^2 (~ 4 fm/c)

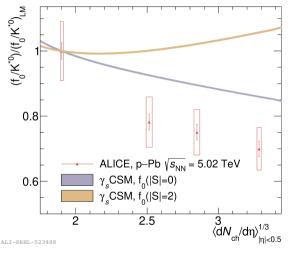
$p_{\rm T}$ spectra for $f_0(980)$


- Fully corrected $p_{\rm T}$ spectra for f₀(980) down to $p_{\rm T} = 0$ in different multiplicity classes
- f₀(980) p_T spectra cannot be reproduced by HERWIG
 7.2 model and AMPT+coalescence model in three configurations (ss̄, uūss̄, and KK molecule).

'14


Particle yield ratios

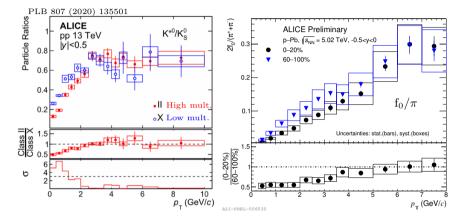
Particle yield ratios: model comparison


- Canonical statistical model (CSM) with multiplicity dependent $\gamma_s \leq 1$ [1] is used to predict (f₀/ π) ratio for strangeness content hypotheses.
- |S| = 2: Increasing trend predicted
- |S| = 0: Decreasing trend predicted
 - [1] V. Vovchenko et al, PRC 100 (2019) 5, 054906

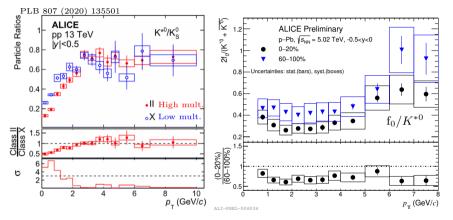
Particle yield ratios: model comparison

- Canonical statistical model (CSM) with multiplicity dependent $\gamma_s \leq 1$ [1] is used to predict (f_0/K^{*0}) ratio for strangeness content hypotheses.
- CSM predicts a flat behavior for |S| = 2 while a decreasing trend (qualitatively similar to what seen in data) is expected for |S| = 0.
 - N.B.: No rescattering effects in CSM
 - [1] V. Vovchenko et al, PRC 100 (2019) 5, 054906

	K^*	$f_0(980)$	ϕ
lifetime (fm/c)	4.2	~ 4	46.2



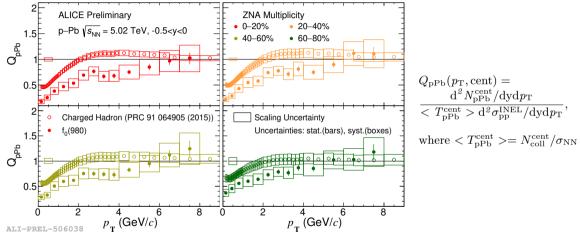
$p_{\rm T}\text{-differential yield ratios of f}_0(980)$ to π


• (f_0/π) : Significant modification at low p_T (< 3 GeV/c) and no modification at high p_T (> 4 GeV/c)

- Similar $p_{\rm T}$ dependence between (pp_{high}/pp_{low}) and (Pb–Pb/pp) for (K^{*0}/K)
- Similar $p_{\rm T}$ dependence between double ratio of (K^{*0}/K) and (f_0/π)

Junlee Kim

$p_{\rm T}$ -differential yield ratios of f₀(980) to K^{*0}


- Rescattering effects should be comparable between $f_0(980)$ and K^{*0} as they have comparable lifetime.
- Different behavior between (K^{*0}/K) and (f_0/K^{*0}) in the full measured p_T interval
- (f_0/K^{*0}) : Modification in the entire p_T range.
 - \rightarrow due to different quark content for the two particles?

Junlee Kim

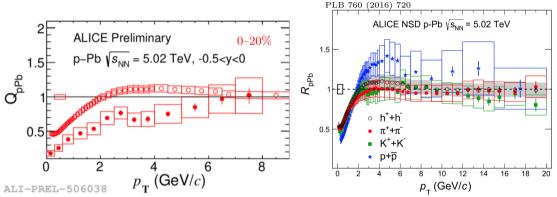
・ロト ・雪・ ・ヨト ・ヨー りへぐ

ALICE

• Multiplicity dependent suppression for $f_0(980)$ at the low $p_{\rm T}(< 4 {\rm ~GeV}/c)$

• Rescattering effects observed in all the centrality intervals

Junlee Kim


2022 SQM 《 □ ▷ 《 🗇 ▷ 《 볼 ▷ 《 볼 ▷ 》 볼 · 옛 < 옷

ଚ୍ଚ

Cronin peak

13/14

• No Cronin peak is observed for $f_0(980)$ in contrast to what is observed for baryons.

Summary

- Multiplicity dependence of $f_0(980)$ in pp and p–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV has been measured to understand the nature of $f_0(980)$.
 - Particle yield ratios and nuclear modification factor in different multiplicity classes to study hadronic gas and $f_0(980)$ structure.
- Decreasing (f_0/π) at low p_T
 - Evidence of rescattering-like effects for the $f_0(980)$
- Decreasing (f_0/K^{*0}) in the full measured p_T range
 - due to different quark content for $f_0(980)$ and K^{*0} ?
- Multiplicity dependence of $Q_{\rm pPb}$ of $f_0(980)$
 - Stronger suppression of $f_0(980)$ at low p_T : rescattering effects
 - No Cronin peak for $Q_{\rm pPb}$ of $f_0(980)$ in high-multiplicity events.
- Models with different quark contents or structures are needed to shed light on $f_0(980)$ structure.

BACKUP

2022 SQM 《 □ › 《 🗇 › 《 토 › 《 토 › 토 · ク < 옷