

Rescattering effects on resonances production in small systems with ALICE at the LHC

Antonina Rosano* for the ALICE collaboration *Università degli Studi di Messina & INFN sezione di Catania

• **Hadronic resonances** → ideal probes to characterize heavy-ion collisions

Introduction

• **Short lived** resonances: comparable to hadronic phase lifetime (~ 1-10 fm/*c*) \rightarrow **sensitive** to **rescattering** and **regeneration**

• **Small** collision systems (pp and p–Pb):

- Used as a **baseline** for heavy-ion collisions
- Recent results show some typical phenomena of heavy-ion collisions

Particle yield ratios in small systems

Resonance yields compared to ground-state hadrons with similar quark content (such as K^{*0}/K and ρ^{0}/π)

- Goal in heavy ion collisions: characterize the properties of the hadronic phase
- Same study in pp and p−Pb collisions → smooth trend across multiplicity
- Long-lived resonances (like ϕ) \rightarrow no evidence of multiplicity evolution
- K^{*0} and $\rho^0 \rightarrow$ hint of decreasing trend
- Some QCD-inspired event generators, like PYTHIA 8 [1] and EPOS-LHC [2] can reproduce the suppression without a hadronic phase → colour reconnection and core/corona effects

[1] Phys. Rev. D 97, 036010 (2018)[2] Phys. Rev. C 92, 034906 (2015)

ALICE

The ALICE detector: Main sub-detectors for resonance reconstruction

The ALICE detector: (Interview of the second seco

Antonina Rosano/SQM2022

Signal extraction

- **Resonance yield extraction** from invariant mass distribution of the decay daughters identified with TPC/TOF and topological selection criteria
- Uncorrelated background calculated via event mixing technique or like-sign pair method
- Remaining distribution fitted with a Breit-Wigner (signal) + polynomial (residual background)

p_{T} distributions versus event multiplicity: K*(892)[±]

pp at \sqrt{s} = 13 **TeV**

- Good agreement between K*[±] and K*⁰ results (isospin symmetry)
- Hardening of *p*_T spectra and maximum shifts with increasing multiplicity → flowlike effects

LOWER PANEL

- Mean $p_{\rm T}$ increasing with multiplicity
- The process causing spectra variation is dominant at low $p_{\rm T}$

ALI-PREL-503116 Antonina Rosano, Poster Session: Resonances and Hyper-nuclei

p_{T} distributions versus event multiplicity: $\Lambda(1520)$

Λ (1520): same trend as K^{*±}

INF

- The spectral shape changes with multiplicity class
- *p*_T distributions get harder with increasing event multiplicity

Sonali Padhan, Poster Session: Resonances and Hyper-nuclei

Integrated yield versus event multiplicity: Λ(1520)

14 June 2022

pp at \sqrt{s} = 5.02 and 13 **TeV**

• dN/dy spectra exhibit a linear increase with increasing $\langle dN_{ch}/d\eta \rangle$

As observed for other hadron species, resonance production rate does not depend on collision energy \rightarrow it is driven by the event multiplicity

Sonali Padhan, Poster Session: Resonances and Hyper-nuclei

K*(892)[±]/K⁰_s ratio versus event multiplicity

Antonina Rosano, Poster Session: Resonances and Hyper-nuclei Prottay Das, Poster Session: Resonances and Hyper-nuclei

Model predictions are computed for K^{*0} measurements

- Suppression of K*[±]/K⁰_S with increasing multiplicity in pp and Pb–Pb collisions
- K*[±] analysis in pp @ 13 TeV confirms, with lower systematic uncertainties, suppression observed for K*⁰ [3]
- **EPOS-LHC** for pp and **HRG** in Partial Chemical Equilibrium [4] for Pb–Pb collisions: best description
- EPOS-LHC: same treatment for pp, p–A, and A–A systems

 → two regions: core (high density) and corona (low
 density)
- Core can form in pp collisions: critical density reached because of partons multiple scattering

[3] Phys.Lett.B 807 (2020) 135501, 2020 [4] Phys. Rev. C 102, 024909 (2020)

K*[±]/K⁰_s ratio for low and high multiplicity classes

14 June 2022

pp at \sqrt{s} = 13 **TeV**

- Important $K^{*\pm}/K_{S}^{0}$ suppression for $p_{T} < 2.5 \text{ GeV}/c$ (low p_{T})
- Results consistent with those obtained for K^{*0}
- Stronger suppression at low *p*_T interpreted in A–A collisions as a signature for rescattering effects:
 - → hint of a (short-lived) hadronic phase in pp collisions?

Antonina Rosano, Poster Session: Resonances and Hyper-nuclei

INFŃ

Λ*/Λ ratio versus event multiplicity

- No suppression for Λ*/Λ in pp and p–Pb collisions
- Suppression of Λ*/Λ in most central Pb–Pb collisions with respect to smaller systems and peripheral Pb–Pb
- Λ^*/Λ is more suppressed w.r.t K*/K although $\tau(\Lambda^*) > \tau(K^*)$

Sonali Padhan, Poster Session: Resonances and Hyper-nuclei

Transverse spherocity: K*(892)[±] in pp at √*s* = 13 TeV

 $p_{\rm T}$ spectra for several spheoricity classes measured for high multiplicity events

- Dominance of isotropic events seems to decrease with increasing $p_{\rm T}$, where jetty events take over
 - K*[±]/K[±] ratio: hint of spherocity dependence at low p_T

14 June 2022

14/17

Measurement of ϕ meson pair in pp at $\sqrt{s} = 7$ TeV

Strangeness enhancement in **small systems**: study of double φ production in pp at $\sqrt{s} = 7$ TeV

• Inclusive ϕ meson production: $\langle Y_{\phi} \rangle$ In terms of statistical properties:

 $\mu = \langle \mathbf{Y}_{\phi} \rangle$ Average yield of produced ϕ meson

 $\sigma^2 = \langle Y_{\phi}^2 \rangle - \langle Y_{\phi} \rangle^2$ Variance of produced ϕ mesons

• $\langle Y_{\Phi} \rangle^2$ directly measured, $\langle Y_{\Phi}^2 \rangle$ can be obtained through the ϕ meson pair production: $\langle Y_{\Phi\Phi} \rangle$

$$\langle \mathbf{Y}_{\phi}^{2} \rangle = 2 \langle \mathbf{Y}_{\phi\phi} \rangle + \langle \mathbf{Y}_{\phi} \rangle \implies \sigma^{2} = \left(2 \langle \mathbf{Y}_{\phi\phi} \rangle + \langle \mathbf{Y}_{\phi} \rangle \right) - \langle \mathbf{Y}_{\phi} \rangle^{2}$$

Measurement of **φ** meson pair in pp at √s = 7 TeV

14 June 2022

Strangeness enhancement in **small systems**: study of double φ production in pp at $\sqrt{s} = 7$ TeV

• New way to characterise production:

$$\gamma_{\phi} = \frac{\sigma^2}{\mu} - 1 = \frac{2\langle \mathbf{Y}_{\phi\phi} \rangle}{\langle \mathbf{Y}_{\phi} \rangle} - \langle \mathbf{Y}_{\phi} \rangle$$

- γ_{Φ} describes the accordance with a poissonian behaviour of the production statistics:
 - > If $\gamma_{\Phi} = 0$, **purely statistical** with a Poissonian distribution
 - \succ If $\gamma_{\Phi} \neq 0$, production **enhanced** or **suppressed**

Results:

- $\succ \gamma_{\Phi} \geq 0$: non-statistical and enhanced
- \succ PYTHIA models underestimate $\langle Y_{_{\Phi}}\rangle$, $\langle Y_{_{\Phi\Phi}}\rangle$ while $\gamma_{_{\Phi}}$ is described quantitively

Summary

- **Small collision systems**: from benchmark measurements to results with a trend similar to Pb–Pb collisions
- New measurements of K*(892)[±] consistent with the result obtained for K*(892)⁰
 - K*±/K⁰_S ratio suppressed in high multiplicity pp collisions → rescattering effects or mini-plasma formation (core) in small systems too?
 - > Ratio of $K^{*\pm}/K^{\pm} p_{T}$ spectra: hint of spherocity dependence
- New measurements of $\Lambda(1520)$
 - $\sim \Lambda(1520)/\Lambda$ ratio suppressed in central Pb–Pb collisions. No suppression in pp and p–Pb collisions
- φ meson pair production
 - Strangeness production in pp collisions: deviations from a Poissonian distribution

Thank you for your attention

Backup

Introduction

• Hadronic resonances are the perfect probes to characterize the system formed in heavy-ion collisions at ultrarelativistic energies

• If the critical condition of temperature and energy density are satysfied ($T_c \sim 170 \text{ MeV}$ and $\varepsilon_c \sim 1 \text{ GeV/fm}^3$), system evolves following several stages: Pre-equilibrium $\rightarrow \text{QGP} \rightarrow$ Hadronization \rightarrow Chemical freeze-out \rightarrow Kinetic freeze-out

• In particular the phase between chemical and kinetic freeze-out is known as **hadronic phase**

- Small collision systems (pp and p–Pb):
 - Used as a baseline for heavy-ion collisions

Recent results on resonance production show the onset of phenomena typical of heavy-ion collisions, like collective behaviour and suppression of the yield ratios of resonances to stable particles

Hadronic phase

Resonances with a lifetime comparable to the one of the hadronic phase are particularly interesting because they may be sensitive to the competing **rescattering** and **regeneration** effects

Regeneration: a given resonance can be regenerated as a consequence of pseudo-elastic collisions of the particles medium \rightarrow signal gain: yield enhancement.

Re-scattering: resonance decay daughters interact with other particles of the hadronic medium \rightarrow signal loss: yield suppression.

Long-lived resonances, like $\Xi(1530)$ and $\varphi(1020)$, decaying outside the hadronic medium do not undergo any such processes

Main resonances studied by ALICE

Yields at kinetic freeze-out depend on:

- Resonance and hadronic phase lifetime
- Yields at the chemical freeze-out
- Scattering cross sections of decay products

Resonance yields encode the effects of interaction during the hadronic phase!

Lifetime

Resonance	ρ(770)º	K*(892)±	K*(892)º	f₀(990)	Σ(1385)±	Ξ(1820) ±	۸(1520)	≡(1530)⁰	ф(1020
Quark composition	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	us, ūs	$d\bar{s}, \bar{d}s$	unknown	uus, dds	dss	uds	uss	<u>s</u> 5
au (fm/c)	1.3	3.6	4.2	large unc.	5-5.5	8.1	12.6	21.7	46.4
Decay	ππ	$K^{0}_{s}\pi$	Кπ	π+π-	Λπ	ΛК	рК	Ξπ	кк
B.R.(%)	100	33.3	66.6	46	87	unknown	22.5	66.7	48.9

Fireball lifetime: $\tau \sim 10$ fm/c at LHC energies

The ALICE detector

a. ITS SPD Pixel b. ITS SDD Drift c. ITS SSD Strip d. V0 and T0 e. FMD

Data colected from:

Collision System	$\sqrt{s_{_{NN}}}$ (TeV)					
рр	0.9, 2.76, 5.02, 7, 8,13					
p–Pb	5.02, 8.16					
Xe–Xe	5.44					
Pb–Pb	2.76, 5.02					

Overview on resonance production

14 June 2022

Small collision systems (pp, p–Pb):

- $\phi/K \Sigma^{*\pm}/\Lambda \Lambda(1520)/\Lambda$, and Ξ^{*0}/Ξ ratios are independent on charged particle multiplicity
- ρ^0/π , $K^{*0}/K \rightarrow$ hint of suppression (possible re-scattering effect)

Heavy-ion collision systems (Pb–Pb, Xe–Xe):

- **ρ**⁰/π, K*⁰/K, Σ*±/Λ, and Λ(1520)/Λ ratios are suppressed with respect to pp, p–Pb and peripheral Pb–Pb: dominance of re-scattering compared to regeneration
- φ/K, and Ξ*⁰/Ξ no suppression: larger lifetime → decay outside the medium

New results for K*(892)[±], Λ (1520), and ϕ (1020) will be shown here