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Hydrodynamics and nuclear collisions
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Hydrodynamics and nuclear collisions

- V,T" =0 =—

Relativistic hydrodynamics

Choose:
" = eutu” + (P + 1) (uHu” — g") + Tt

— equilibrium pieces (e, P, u*, ...)

— non-equilibrium pieces (II, 7%, ...)
Two basic assumptions:

— Space-time gradients are small

— Non-equilibrium corrections are small

How can we test hydrodynamics?

— Check Knudsen numbers Kn

. Assume coarsejgrained. _ — Check inverse Reynolds numbers Re ™
(i.e., thermodynamic) description



Organizing hydrodynamics

— Denicol-Niemi-Molnar-Rischke (DNMR) equations of motion
— Systematic expansion around ideal hydrodynamics in Kn, Re™*

— Equations obtained by truncating at second-order and matching to kinetic theory

— Relativistic causality?
— Second-order theories (e.g., DNMR) often thought to be
automatically relativistically causal

— This is not guaranteed; relativistic causality must be checked explicitly

— New tests for hydrodynamics
— New constraints recently derived for DNMR equations of motion [PRL 126 (2021), 222301]
— Causality implies 0 < v? < ¢?, so evolution equations must:
(i) be hyperbolic (v? > 0)
(ii) have no superluminal propagation (v* < ¢?)

— Causality conditions (6 necessary and 8 sufficient) can be checked for each fluid cell



Causality categorization

— Identify three categories of fluid cells:

1. Blue - cells where all sufficient conditions are met (definitely causal)

2. Purple - cells where not all sufficient conditions are met but all necessary
conditions are met (maybe causal or acausal)

3. Red - cells where one or more necessary conditions are violated (definitely
acausal)
— Check different models

— Trento + free-streaming + iIEBE-VISHNU (Bayesian tune)
— IP-Glasma + KgMPgST + MUSIC

— Check various collision systems and energies
— Small systems: p+Pb @ 5.02 TeV
— Intermediate systems: O+0 @ 5.02 TeV
— Large systems: Pb+Pb @ 2.76 TeV



Some results
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Cell fractions vs. AT =717 — 19
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* Most definite causality violations resolved in first 15% of evolution
* 50% of cells definitely causal after 20% of evolution (2-3 fm)
» System complete causal after 40% of evolution (4-5 fm)



Pb+Pb @
2.76 TeV

IP-Glasma
+ MUSIC

Superluminal
propagation
(v? > ¢?)

Non —
hyperbolicity

(v? < 0)

Causality conditions distinguish two kinds of violations:
superluminal propagation (v? > ¢?) and non-hyperbolicity (v? < 0)
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What about observables?
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What about observables?

0.10

Significant evolution when less
than half of system is causal!
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These results do not imply that:

— Relativistic causality is actually violated in nuclear collisions

— Hydrodynamics is inapplicable in or irrelevant to nuclear collisions

These results do imply that:

— Enforcing relativistic causality in hydrodynamic simulations will almost
certainly lead to measurable changes in parameter ranges favored by data

— Theoretical uncertainties induced by violations expected to be O(10%),
depending on observables and collision size (worse in small systems)

— Violations predominate at early times where Knudsen and/or inverse
Reynolds numbers are large

— Inclusion of pre-equilibrium phase significantly reduces severity of violations
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Conclusions

e Causality violations have been observed in realistic fluid dynamical
simulations of nuclear collisions

* Violations predominate where hydrodynamic description is breaking
down and/or becoming unreliable

 Possible solutions (not mutually exclusive):
— Delaying the onset of hydrodynamics Tha/n/k yOU/
— Improving description of pre-equilibrium dynamics ¥/
— Supplementing with non-hydrodynamic models |

* Enforcing relativistic causality offers a unique opportunity to better
understand transition from initial stages to hydrodynamic evolution







What about the regulator?

* Up to 75% of system acausal at a given time

e Causality violations closely associated with largeness of inverse
Reynolds number for shear

* Pre-equilibrium evolution seems to help significantly

What role does the regulator play?

e Option 1: Default regulator
e Option 2: Enhanced regulator [cf. PRC102 044905 (2020)]
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Causality in Small Systems
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Some observations

e Up to 70% of system acausal at a given time(!)

e Causality violations closely associated with largeness of inverse
Reynolds number for shear

* Pre-equilibrium evolution seems to help significantly

* Regulator makes a dramatic difference!
* Stabilizes simulation
* Effectively discards causality violations
» Substantially alters space-time evolution



TrENTo
+ free-streaming
+ VISHNU

Pb+Pb @
2.76 TeV

p+Pb @
5.02 TeV

Causality

y (fm)

T=1.16 fm/c

y (fm)

T=1.16 fm/c

T=1.16 fm/c

—1

0.

.0

8

0.2

0.0

T=0.37 fm/c

y (fm)

7=0.37 fm/c

r 1.0

0.8

0.2

0.0




Relativistic Causality
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DNMR equations

Denicol-Niemi-Molnar-Rischke (DNMR) equations of motion:}

T“u.“?,_lﬂ | IT Cv“u‘”’ r’i““TI?HH'“' A“rﬂ'#ijﬂ';“,,

A 3 : .
T AL Su VAT + 7t = —2no™ — §pamtVau® — Tﬂﬁ?rffr:r”}” — Apnn1lo™”,

Transport coefficients ((, 1, T, 711, Trry s, OIIIT, Axll, Allx) are (in general) functions of the
ten dynamical variables

Energy density e Flow velocity u*
Bulk pressure 11 Shear stress tensor m#"
but not their gradients!
Also define:
1
v [ I5] [ 7 v LAV T v
LEYNA S AR — (Agaﬁ +A6Aa) AP A
( YA vV opal pB _
AV BN = AR AN B, Ay = Guw + Uy

1 Hydrodynamic codes often include an additional term g077ré‘u 7% which does not affect the causality analysis.



Checking causality: procedure

Step 1: Enforce preconditions for causality analysis

CoMy Ty T Trmes Omerr s OTITT> Anll> Ml - - - are all positive

Step 2: Get eigenvalues of shear stress tensor 7£, A;:
A =0, A <Ay<Asgand A; +As+A3=0
(follows from 7#u” = 0 and Tr7 = 0)
Step 3: Evaluate necessary and sufficient conditions for causality in DNMR

Step 4: Assess hydrodynamic validity using

Re;! = \/mun®/(c + P),  Rey' = 1| /(c + P)



DNMR: necessary conditions for causality

I
(2 + AgnT) — §T«.rrw|f"1| >0

1 T
£+P—|—ﬂ—r—(2n+)\,ﬂ|ﬂ}—?- f”!._'_.;EU,
2T, 4T,

., " § Total of six necessary
?(ET}—I—A?T“]T)—F&T[ (Aa +Ay) >0, a#d, o e .
i “ conditions: if any
conditions are violated,
fluid cell is guaranteed to

! |
e+ P 4T+ A — 5—(20+ Agull) - I"’ (Ag+A) >0, a#d

w TTI'

1 1
— (20 + AenTD) + ZEA g + —[27 + AT+ (66, — Trr)Adl]
27, 27 67

+C + Oppp T + A A
I

+(e+P+1I14+ Ag)e2 >0,

1 o 1 |
e+ P+ 1+ Ag— 5—(2n+ Aenll) — 5 A - — 20 + Aentll + (66,7 — Toere ) Adl] be daCausa
ol + A A, .
_C-i— il + A g —(E+J’—|—11—|—Ad)f{f >0,
TI1
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DNMR: sufficient conditions for causality

1 T
(e4+P+TT—|A]) = —2n+ AepiT) — -—A3 >
27, 2T

™
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Total of eight sufficient
conditions: if all
conditions are satisfied,
fluid cell is guaranteed
to be causal
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Where do we go from here?

Some concrete recommendations:

Causality violations should be incorporated into all hydrodynamic codes
and /or Bayesian analyses of hydrodynamic frameworks

New /better observables which may be more sensitive to the causality con-
straints

— space-time observables (e.g., HBT)

— momentum-space observables (e.g., principal component analyses)

More thorough exploration of causality analyses’ dependence on model
parameters underway

Some form of pre-equilibrium evolution will likely prove necessary for
restoring causality more generally



Basic ingredients for hydrodynamics

Energy-momentum tensor: THY = eufu” + (P + 1) APY + 7h*
Conservation laws: vV, T" =0
Initial conditions: e =¢eo(T =170,2,Y,7)

ut = US(T — 709$3y777)

Y =my (T = 10,2, 9, 7)
Here: IP-Glasma, TR ENTo

Equation of state: P=P(T,{u})
Pre-equilibrium evolution: KgMP@ST? Free-streaming?

— Still a lot of room for different implementations of hydrodynamics!
27



Putting hydrodynamics to the test

— Assess hydrodynamic validity using

Re ' = /T, 7" /(e + P)
Rer;' = |II| /(¢ + P) (similar for Kn,, Kny)

— Hydrodynamics applies when:
Re_ ', Reg' < 1
Kn,, Knj <1

— Test on model 100 collisions
TRENTo + free-streaming + iEBE-Vishnu

Model parameters adjusted to reproduce data

Conclusion:
hydrodynamaics s pressed to its limits
in small and intermediate systems!

Average
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Conclusions

* Current hydrodynamic frameworks are pressed to their limits at early
times where gradients and non-equilibrium corrections are large,
regardless of collision species

* Fluid cells with large gradients and non-equilibrium corrections tend
to generate causality violations when evolved hydrodynamically

* Pre-equilibrium evolution mitigates these violations to some extent, ,.
but does not eliminate them entirely I

e Causality constraints must be incorporated into future hydrodynamic
tunes to experimental data



