The dark side of ALICE: from antinuclei interactions to dark matter searches in space

P. Larionov1,2, on behalf of the ALICE collaboration

1CERN,
2Laboratori Nazionali di Frascati - INFN

\texttt{pavel.larionov@cern.ch}
Introduction and motivation

Antinuclei (\bar{d}, ^{3}He, ^{4}He) in space (studied by AMS-02, GAPS) may result from:

- Dark matter annihilation (or decay) \rightarrow signal
- Interaction of high energy cosmic rays with the interstellar gas \rightarrow background

- Low background is expected in the low energy range
- Vital to determine exact primary and secondary antinuclei fluxes
- Requires precise knowledge of antinuclei inelastic interaction with interstellar gas
Antinuclei σ_{inel} measurements (before ALICE)

Relevant inelastic cross sections (σ_{inel}) only poorly constrained for antinuclei heavier than \bar{p}:

- Antihelium inelastic c.s. have never been measured at any momenta

\[\text{No data} \]

LHC as an antimatter factory

\[p, d, t, ^3\text{He}, \ldots \]

\[\bar{p}, \bar{d}, \bar{t}, ^3\text{He}, \ldots \]

High energy collisions at LHC = the most suitable environment to study production of (anti)nuclei and their annihilation

- At LHC energies matter and antimatter are produced in almost equal amounts
- ... propagate through detector material
- ... and get absorbed inside the detector
 - in ALICE we are in a unique position to quantify \(\sigma_{\text{inel}} \)!
LHC as an antimatter factory

$p, d, t, \overline{3He}, \ldots$

$p, d, t, \overline{3He}, \ldots$

High energy collisions at LHC = the most suitable environment to study production of (anti)nuclei and their annihilation

This talk: focus on $A = 3$
ALICE apparatus and its particle identification capabilities

Time Projection Chamber:
- Gas-filled, MWPC readout
- PID via dE/dx

Time of Flight:
- Multigap RPC
- PID via time-of-flight measurement
Methods to measure σ_{inel}

Antiparticle/particle raw ratio (pp, p-Pb collisions):
- Measure reconstructed d/d, $^3\text{He}/^3\text{He}$... and compare with MC simulations

 + Access to low momenta ($p \leq 1 \text{ GeV/c}$)

 - Relies on $\sigma_{\text{inel}}(\text{nuclei})$

 - Background from secondary particles

TOF/TPC ratio (Pb-Pb collisions):
- Measure reconstructed $N_{^3\text{He}}^{\text{TOF}}/N_{^3\text{He}}^{\text{TPC}}$ and compare with MC simulations

 + High statistics, wide momentum range

 + Independent of $\sigma_{\text{inel}}(\text{nuclei})$

 - No access to very-low momenta ($p \leq 1 \text{ GeV/c}$)
Antiparticle/particle raw ratio

- Antiparticle-to-particle ratios are sensitive to the variation of the inelastic cross section
- Vary $\sigma_{\text{inel}}(\bar{d}, \text{He})$ in simulations until MC describes the experimental results
 - constraints on $\sigma_{\text{inel}}(\bar{d}, \text{He})$

Method 1

ALICE

p–$\text{Pb} \sqrt{s_{\text{NN}}} = 5.02$ TeV

Raw (\bar{p}/p) for MC with varied $\sigma_{\text{inel}}(\bar{p})$ and data

- MC simulations with $\sigma_{\text{inel}}(\bar{p}) \times 0.75$
- MC simulations with default $\sigma_{\text{inel}}(\bar{p})$
- MC simulations with $\sigma_{\text{inel}}(\bar{p}) \times 1.25$
- Data $\pm 1\sigma$ ($1\sigma = \text{stat.} \oplus \text{syst.} \oplus \text{global}$)

Antiparticle/particle raw ratio: $\sigma_{\text{inel}}(\bar{d})$

- First measurement of antideuteron inelastic cross section at low momenta!
- Exp. σ_{inel} is approx. 15% smaller w.r.t. Geant4 at high momenta, steeper rise in low p region
- Published: PRL 125, 162001 (2020)
How we measure σ_{inel} with TPC-TOF matching

- Identify $N_{\text{TOF}} / N_{\text{TPC}}$ in data and simulations
- Monte Carlo simulations with scaled σ_{inel} (0.5x, 1x, 1.5x)
- In each momentum bin compare the TOF-TPC ratio in MC to the one in data

[arXiv:2202.01549]
How we measure σ_{inel} with TPC-TOF matching

- Identify $N_{\text{TOF,track}} / N_{\text{TPC,track}}$ in data and simulations
- Monte Carlo simulations with scaled σ_{inel} (0.5x, 1x, 1.5x)
- In each momentum bin compare the TOF-TPC ratio in MC to the one in data

- Fit MC points with an exponential according to the Lambert-Beer law:
 $N = N_0 \times \exp(-\sigma \rho L)$
- extract $\sigma_{\text{inel}} / \sigma_{\text{inel}}^{\text{def}}$ scaling factor
- calculate the inelastic cross section on $\langle A \rangle$:

$$\sigma_{\text{inel}}(^3\text{He}) = \sigma_{\text{inel}}^{\text{Gean}4}(^3\text{He}) \times \text{scaling factor}$$

[arXiv:2202.01549]
Results: ^3He inelastic cross section
Results: ^3He inelastic cross section

- $\sigma_{\text{inel}}(^3\text{He})$: Results for antiparticle-to-particle raw ratio and TOF-to-TPC ratio:

 First ever measurement of ^3He inelastic cross section!

 - Results from both methods are compatible (higher precision in TOF-to-TPC ratio)
 - Bands: statistical \oplus systematic uncertainties

![Graph showing $\sigma_{\text{inel}}(^3\text{He})$ on averaged ALICE material](graph.png)

^3He on averaged ALICE material

ALICE pp $\sqrt{s} = 13$ TeV

$|\eta| < 0.8$

- $\langle A \rangle = 17.4$
- $\langle A \rangle = 31.8$
- $\langle A \rangle = 17.4$

95% confidence upper limit

Method 1

[arXiv:2202.01549]
Results: ^3He inelastic cross section

- $\sigma_{\text{inel}}(^3\text{He})$: Results for antiparticle-to-particle raw ratio and TOF-to-TPC ratio:
 - First ever measurement of ^3He inelastic cross section!

- Results from both methods are compatible (higher precision in TOF-to-TPC ratio)
- Bands: statistical \oplus systematic uncertainties

\[\sigma_{\text{inel}}(^3\text{He}) \text{ on averaged ALICE material} \]

ALICE
0–10% Pb–Pb $\sqrt{s_{NN}} = 5.02$ TeV
$|\eta| < 0.8$
\[\langle A \rangle = 34.7 \]

\[\text{Data} \quad \text{GEANT4} \]

[arXiv:2202.01549]
Results: ^3He inelastic cross section

- $\sigma_{\text{inel}}(^3\text{He})$: Results for antiparticle-to-particle raw ratio and TOF-to-TPC ratio:

 First ever measurement of ^3He inelastic cross section!

- Results from both methods are compatible (higher precision in TOF-to-TPC ratio)
- Bands: statistical \oplus systematic uncertainties

\rightarrow Next: impact on ^3He propagation in space
Propagation of ^3He in the Galaxy: ingredients

\[\frac{\partial \psi}{\partial t} = q(r, p) \]

\[\nabla \cdot (D_{xx} \nabla \psi - V \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \psi - \frac{\partial}{\partial p} \left[\psi \frac{dp}{dt} - \frac{p}{3} (\nabla \cdot V) \psi \right] - \frac{\psi}{\tau_f} + \frac{\psi}{\tau_r} \]

- Can be numerically solved using publicly available \texttt{GALPROP} package
- \textbf{Propagation parameters} (common for all (anti)nuclei) can be constrained using available cosmic ray measurements [1]

- Calculation of antinuclei flux requires:
 - \textbf{X} source function: differential production cross section [2, 3]
 - \textbf{X} annihilation cross section

^3He source (l): dark matter

Source function

$$q(r, E_{\text{kin}}) = \frac{1}{2} \frac{\rho_{\text{DM}}^2(r)}{m_{\chi}^2} \langle \sigma v \rangle (1 + \epsilon) \frac{dN}{dE_{\text{kin}}}$$

- ρ_{DM} - Navarro–Frenk–White profile [1]
- $m_{\chi} = 100$ GeV for W^+W^-
- $\langle \sigma v \rangle = 2.6 \times 10^{-26} \text{ cm}^3\text{s}^{-1}$ [2]
- $(1 + \epsilon) = 2$ [1]
- ^3He spectrum from [1] PYTHIA 8 + coalescence afterburner
 \rightarrow peak at $E_{\text{kin}} \sim 0.1$ GeV/A

^3He density distr.

$\chi\bar{\chi} \rightarrow W\bar{W}, m_{\chi} = 100\text{GeV}$

Another relevant ^3He source from interactions of cosmic rays (CR) with interstellar medium (ISM)

- Collision systems: pp, p-^4He, ^4He-p, ^4He-^4He
- Production cross section in pp from [1]: EPOS LHC + coalescence afterburner
- Scaling factor ($A_T A_P$)$^{2.2/3}$ for the other collision systems
- Validated by ALICE data [2]

Cosmic rays

- ^3He 8 %
- ^3He 9 %
- Protons 91 %
- Protons 90 %

ISM

- ^3He 9 %
- Protons 90 %

Another relevant 3He source from interactions of cosmic rays (CR) with interstellar medium (ISM)

- Collision systems: pp, p-4He, 4He-p, 4He-4He
- Production cross section in pp from [1]: EPOS LHC + coalescence afterburner
- Scaling factor $(A_T A_P)^{2/3}$ for the other collision systems
- Validated by ALICE data [2] ✅

See talk by Chiara Pinto
Tue 14.06 at 9:20

Comparison with ALICE results [1,2]
^3He nuclei may interact inelastically with the interstellar gas ($A = 1, A = 4$)

- ALICE results for $\sigma_{\text{inel}}(^3\text{He})$ are for heavy elements with $\langle A \rangle = 17.4$ to 34.7
- Rescaled for proton and helium targets
- 8% uncertainty from A scaling [1] is valid for all targets
Annihilation

^3He nuclei may interact inelastically with the interstellar gas ($A = 1, A = 4$)

- ALICE results for $\sigma_{\text{inel}}(^3\text{He})$ are for heavy elements with $\langle A \rangle = 17.4$ to 34.7
- Rescaled for proton and helium targets
- 8% uncertainty from A scaling [1] is valid for all targets

Results: ^3He fluxes
Results: ^3He fluxes

- Effect of various inelastic cross sections on ^3He fluxes
- Uncertainty only from σ_{inel} from ALICE data: small compared to other uncertainties in the field!
- ^3He transparency (at low E_{kin}): 25% from CR interactions, 50% from typical DM candidates
- Flux outside heliosphere

\[\text{Transparency} = \frac{\text{Flux}(\sigma_{\text{inel}})}{\text{Flux}(\sigma_{\text{inel}} = 0)} \]

\[m_\chi = 100 \text{ GeV/}c^2 \]
\[\chi + \chi \rightarrow W^+W^- \rightarrow ^3\text{He} + \chi \]

Outside heliosphere

Results: ^3He fluxes

- Effect of various inelastic cross sections on ^3He fluxes
- Uncertainty only from σ_{inel} from ALICE data: small compared to other uncertainties in the field!
- ^3He transparency (at low E_{kin}): 25% from CR interactions, 50% from typical DM candidates
- Solar modulation: flux near Earth

High transparency of the Galaxy to ^3He nuclei!

Summary and outlook

ALICE performed **groundbreaking measurements** of antinuclei inelastic cross sections:

- \bar{d} at low energy published: **PRL 125, 162001 (2020)**
- ^{3}He paper submitted: **arxiv.org/2202.01549**

Impact on antinuclei flux near Earth:

- **High transparency of the Galaxy to ^{3}He**
- Small uncertainties on cosmic ray fluxes from $\sigma_{\text{inel}}(^{3}\text{He})$ compared to other uncertainties in the field
- $\sigma_{\text{inel}}(\bar{d})$ used to re-evaluate the antideuteron cosmic ray fluxes: **Phys. Rev. D 105 (2022) 8, 083021**

Thank you for your attention!
Backup slides
Solar environment effects

- Solar magnetic field forms heliosphere which shields cosmic rays
- Solar modulation is accounted for using Force–Field approximation [1] with Fisk potential $\phi = 0.4$ GV:

$$F_{\text{mod}}(E_{\text{mod}}, \phi) = F(E) \frac{(E - Z\phi)^2 - m_{\text{He}}^2}{E^2 - m_{\text{He}}^2}, \text{ where } E_{\text{mod}} = E - Z\phi$$