Contribution ID: 24

Type: Talk

Scaling properties of background- and chiral-magnetically-driven charge separation in Au+Au, Ru+Ru, and Zr+Zr collisions at $\sqrt{s}_{\rm NN} = 200$ GeV

Tuesday 14 June 2022 14:00 (20 minutes)

The Anomalous Viscous Fluid Dynamics model, AVFD, is used in concert with the charge-sensitive correlator $R_{\Psi_2}(\Delta S)$ to study the scaling properties of background- and chiral-magnetically-driven (CME) charge separation (ΔS), characterized by the inverse variance $\sigma_{R_2}^{-2}$ of the $R_{\Psi_2}(\Delta S)$ distribution, in Au+Au, Ru+Ru, and Zr+Zr collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. The $\sigma_{R_2}^{-2}$ values for the background are event-shape-independent but show a characteristic scaling pattern with the charged-particle multiplicity, indicating an essential constraint for discerning background from the signal and a robust estimate of the difference between the backgrounds in Ru+Ru and Zr+Zr collisions. By contrast, the $\sigma_{R_2}^{-2}$ values for signal + background show scaling violations that characterize the CME-driven contributions. I will discuss these scaling patterns and their implication for the detection and characterization of the CME. Corrections to recent $R_{\Psi_2}(\Delta S)$ measurements that account for the background difference in Ru+Ru and Zr+Zr collisions will also be presented and discussed.

Present via

Offline

Primary author: LACEY, Roy Presenter: LACEY, Roy Session Classification: PA-Other topics

Track Classification: Other topics