The medium-modified $g \to c \bar c$ splitting function in the BDMPS-Z formalism

Sohyun Park* (CERN)

M. Attems, J. Brewer, G.M. Innocenti, A. Mazeliauskas, W. van der Schee, U.A. Wiedemann (CERN)

*supported by CERN-Korea-Collaboration fellowship

Based on <u>arXiv:2203.11241</u>

Heavy quark production in pp collisions

 $m_b \sim 4.18 \text{ GeV}$ $m_c \sim 1.27 \text{ GeV}$ ^OCD ~ 200 MeV

 $\hat{\mathbf{S}}$: partonic center of mass energy²

- ullet The total charm production cross section is dominated by ${f c}{f c}$ pairs emerge back-to-back c.f. $\mathbf{g} o \mathbf{c} \mathbf{\overline{c}}$ is collinear
- The QGP forms later than this short-distance process & it only modifies the pT distribution of the cross section
- set the reference for the total charm yield in heavy-ion collisions

M. Cacciari et al., <u>JHEP 10 (2012) 137</u>

Dominant medium-modification of charm in the QGP

As a charm traverses in QGP it re-scatters.

The dominant process is ${f c} o {f c} {f g},$ described by the ${f c} o {f c} {f g}$ splitting function.

- BDMPS-Z calculation shows the enhancement of gluon radiation from charm in the QCD medium
- Experimentally observed via the modification of high-pT spectra of charmed hadrons due to radiative energy loss

BDMPS, Nucl.Phys., B484:265–282, 199

B.G. Zakharov, JETP Lett., 63:952–957, 1996.

Y.L. Dokshitzer, D.E Kharzeev, Phys.Lett. B 519, 199-206, 2001

Charm production from ${f g} ightarrow {f c} {f ar c}$ splitting in the QGP

We applied the BDMPS-Z formalism to calculate the medium-modification of $g \to c \overline{c}$ splitting function

Why is this interesting?

- medium-induced production in the long distance (not dominant $\overline{\mathbf{CC}}$ production in the short distance but dominant production in the medium)
- a way to access medium properties
- collinear to the gluon direction (not back-to-back), so \overline{cc} pairs likely to remain inside the gluon jet
- traceable with gluon jets

arXiv:2203.11241 & Letter in preparation

- in-medium calculation of $\ g \to c \overline{c}$ splitting function in the BDMPS-Z formalism Plan:
 - one experimental observable for medium-modification of $g \to c \bar c$ splitting function: $D^0 \bar D^0$ production in high pT gluon jets

Factorization of partonic cross section in the collinear limit

In the collinear limit $Q^2 \ll \hat{s}$ a partonic cross section factorizes.

$$\hat{\sigma}^{gg \to c\bar{c}X} \xrightarrow{Q^2 \ll \hat{s}} \hat{\sigma}^{gg \to gX} \otimes \frac{\alpha_s}{2\pi} \frac{1}{Q^2} P_{g \to c\bar{c}}$$

splitting function: probability for a gluon to split to a $c\, \overline{c}$ pair

 \hat{s} : partonic center of mass energy²

Q: virtuality of the gluon

$$Q^2 = rac{m_c^2 + \mathbf{\kappa}^2}{z(1-z)}$$
 $\mathbf{\kappa} = rac{1}{2} \left(\mathbf{k}_c - \mathbf{k}_{\bar{c}}
ight)$: relative transverse momentum

$$\mathbf{\kappa} = \frac{1}{2} \left(\mathbf{k}_c - \mathbf{k}_{\bar{c}} \right)$$

of $c\, \overline{c}$ pair

 m_c : mass of charm

 \mathbf{k}_c : transverse momentum of charm

z: longitudinal momentum fraction carried by charm

The medium modified $g \to c \bar{c}$ splitting function in the BDMPS-Z formalism

In-vacuum splitting function to leading order in $lpha_s$

Medium-modification of the splitting function in time-ordered perturbation theory in the close-to-eikonal limit

$$\begin{pmatrix} \frac{1}{Q^{2}} P_{g \to c \bar{c}} \end{pmatrix}^{\text{tot}} \equiv \left(\frac{1}{Q^{2}} P_{g \to c \bar{c}} \right)^{\text{vac}} + \left(\frac{1}{Q^{2}} P_{g \to c \bar{c}} \right)^{\text{med}} \\
= 2 \Re \mathfrak{e} \frac{1}{4 E_{g}^{2}} \int_{t_{\text{init}}}^{t_{\infty}} dt \int_{t}^{t_{\infty}} d\bar{t} \exp \left[i \frac{m_{c}^{2}}{2 E_{g} z (1 - z)} (t - \bar{t}) \right] \\
\times \int d\mathbf{r}_{\text{out}} \exp \left[-\frac{1}{2} \int_{\bar{t}}^{\infty} d\xi \underbrace{n(\xi) \sigma_{3}(\mathbf{r}_{\text{out}}, z)} \right] \exp \left[-i \, \mathbf{\kappa} \cdot \mathbf{r}_{\text{out}} \right] \\
\times \left[\left(m_{c}^{2} + \frac{\partial}{\partial \mathbf{r}_{\text{in}}} \cdot \frac{\partial}{\partial \mathbf{r}_{\text{out}}} \right) \frac{z^{2} + (1 - z)^{2}}{z (1 - z)} + 2 m_{c}^{2} \right] \mathcal{K} \left[\mathbf{r}_{\text{in}} = 0, t; \mathbf{r}_{\text{out}}, \bar{t} \right] \right]$$

 E_q : gluon energy

$$\sigma_3(\mathbf{r}, z) \equiv -\frac{1}{2N_c}\sigma(\mathbf{r}) + \frac{N_c}{2}\sigma(z\mathbf{r}) + \frac{N_c}{2}\sigma((1-z)\mathbf{r})$$

 $n(\xi)$: a longitudinal density of colored scattering centers

 $\sigma({f r})$: elastic cross section of a medium scattering center interacting with a projectile parton

characterize medium

Features of the medium-modified $g ightharpoonup c \bar{c}$ splitting function

ullet In the absence of medium $n(\xi)=0$, it reduces to the vacuum splitting function

$$\left(\frac{1}{Q^2} P_{g \to c \, \bar{c}}\right)^{\text{tot}} \xrightarrow{n(\xi) = 0} \left(\frac{1}{Q^2} P_{g \to c \, \bar{c}}\right)^{\text{vac}} = \frac{1}{Q^4} \left[\left(m_c^2 + \kappa^2\right) \frac{z^2 + (1 - z)^2}{z(1 - z)} + 2m_c^2 \right]$$

ullet For multiple soft scattering (small ${f r}$), take saddle point approximation

$$n(\xi)\,\sigma_3({\bf r},z)\simeq rac{1}{2}\hat{q}(\xi)\,(C_F-N_cz(1-z))\,{\bf r}^2$$
 \longrightarrow ${\cal K}$ becomes the path-integral of an harmonic oscillator quenching parameter color factors

QGP with length L

$$\begin{split} \left(\frac{1}{Q^2}P_{g\to c\,\bar{c}}\right)^{\mathrm{tot}} &\equiv \left(\frac{1}{Q^2}P_{g\to c\,\bar{c}}\right)^{\mathrm{vac}} + \left(\frac{1}{Q^2}P_{g\to c\,\bar{c}}\right)^{\mathrm{med}} \\ &= 2\,\Re\mathfrak{e}\,\frac{1}{4\,E_g^2}\,\int_{t_{\mathrm{init}}}^{t_\infty}dt\int_t^{t_\infty}d\bar{t}\,\exp\left[i\frac{m_c^2}{2E_gz(1-z)}(t-\bar{t})\right] \\ &\quad \times \int d\mathbf{r}_{\mathrm{out}}\exp\left[-\frac{1}{2}\int_{\bar{t}}^{\infty}d\xi \hat{q}(\xi)\,\left(C_F-N_cz(1-z)\right)\mathbf{r}_{\mathrm{out}}^2\right]\,\exp\left[-i\,\mathbf{\kappa}\cdot\mathbf{r}_{\mathrm{out}}\right] \\ &\quad \times \left[\left(m_c^2+\frac{\partial}{\partial\mathbf{r}_{\mathrm{in}}}\cdot\frac{\partial}{\partial\mathbf{r}_{\mathrm{out}}}\right)\frac{z^2+(1-z)^2}{z(1-z)}+2m_c^2\right]\mathcal{K}_{\mathrm{osc}}\left[\mathbf{r}_{\mathrm{in}}=0,t;\mathbf{r}_{\mathrm{out}},\bar{t}\right] \\ &= \left(\frac{1}{Q^2}P_{g\to c\,\bar{c}}\right)^{\mathrm{tot}}\left(E_g,\mathbf{\kappa},z,\hat{q},\bar{L}\right) \end{split}$$

parameterized to medium properties

Features of the medium-modified $g ightharpoonup c \bar{c}$ splitting function

• From the calculation

$$P_{g
ightarrow c \, ar{c}}^{\mathrm{med}} \sim \mathcal{O}\left(rac{\langle \mathbf{q^2}
angle_{\mathrm{med}}}{Q^2}
ight)$$

From model extraction in central PbPb data

$$1~{
m GeV}^2 < \langle {f q}^2
angle_{
m med} = \hat{q}L < 8~{
m GeV}^2$$
 (conservative)

 \longrightarrow in heavy-ion collisions $\langle {f q}^2
angle_{
m med} \sim {\cal O}(m_c^2)$

recall
$$P_{g \to c \, \bar{c}}^{\text{vac}} = z^2 + (1 - z)^2 + 2 \underbrace{m_c^2}_{Q^2}$$

 $\longrightarrow {\sf Medium\text{-}modification} \ \ P_{g\to c\,\bar{c}}^{\rm med} \sim \mathcal{O}\left(\overbrace{Q^2\rangle_{\rm med}}^{2} \right) \ {\sf becomes \ sizeable \ at \ the \ charm \ mass \ scale,}$

which is phenomenologically accessible!

Features of the medium-modified $g \to c \bar{c}$ splitting function

QGP with length L

Broadening

K increases due to transverse momentum broadening of the individual quarks

Enhancement

Gluons that would not split in vacuum can split if in-medium scatterings occur

 \longrightarrow medium-induced production of $c\,\bar{c}$ pairs!

Numerical results of the medium-modified $g ightharpoonup c \overline{c}$ splitting function

QGP with length L

 $\mathbf{\kappa}=\mathbf{k}_c$ in the transverse pair rest frame

Depletion of low \mathbf{k}_c^2 splittings due to the in-medium broadening

An observable sensitive to enhanced $g \to c \bar{c}$ splittings in jets

Experimental strategy

Due to $g \to c\, \bar c$ enhancement, a larger fraction of $D^0 \bar D^0$ -tagged jets expected in heavy-ion collisions

Monte Carlo study with Pythia

Dedicated MC study to provide a first assessment of the feasibility of such measurements

See poster by Aleksas Mazeliauskas, Tue 17:10

Conclusions

- We have calculated the medium-modification of the QCD leading order gluon splitting function into a charm and anti-charm pair in the BDMPS-Z formalism.
- The result of $P_{g \to c \, \bar{c}}^{\mathrm{med}}$ shows broadening of the relative momentum of a $c \, \bar{c}$ pair and enhancement of $c \, \bar{c}$ productions in the QCD medium, which is sizeable at the charm mass scale.
- As an experimental strategy we made a MC study for the fraction of $D^0\bar{D}^0$ -tagged jets w/out, which shows over 10% enhancement of $D^0\bar{D}^0$ -tagged jets.

Great opportunity for new theoretical and experimental developments to study this novel medium-induced effect!

Thank you!

