Thermal radiation and direct photon production in Pb–Pb and pp collisions with dielectrons in ALICE

Hikari Murakami,
Center for Nuclear Study,
Graduate school of Science, the University of Tokyo
on behalf of the ALICE collaboration
Introduction

pp
- Vacuum baseline for p—Pb and Pb—Pb
- Search for new phenomena in high-multiplicity events \(\Leftarrow \text{New} \)

p—Pb
- Cold nuclear matter (CNM) effect

 \[\text{PRC 102 (2020) 055204} \]
- Search for new phenomena in central collisions

Pb—Pb
- Thermal Radiation from QGP and HG \(\Leftarrow \text{New} \)
- Chiral symmetry restoration via \(\rho \) modification
- Coherent photoproduction via \(\gamma \gamma \rightarrow e^- e^+ \)

 [Parallel talk, Laure Massacrier, 13-Jun]

Thermal radiation can be addressed
- \(m_{ee} \) and \(DCA_{ee} \) analysis at intermediate mass region

 (IMR: \(1.1 < m_{ee} < 2.7 \text{ GeV}/c^2 \))
- Direct photon analysis via virtual-photon \(\gamma^* \) analysis \((m_{ee} \rightarrow 0) \)
ALICE experiment

Inner Tracking System
- Vertexing
- Tracking
- Particle identification

Time Projection Chamber
- Tracking
- Particle identification

Time-Of-Flight
- Particle identification

V0 scintillation counter
- Trigger : minimum-bias (MB) & high-multiplicity (HM)
- Multiplicity determination
- Centrality estimation

Analyzed datasets in this talk

<table>
<thead>
<tr>
<th>Collision system</th>
<th>Analyzed luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV</td>
<td>84 μb$^{-1}$ (0-10%)</td>
</tr>
<tr>
<td>pp at $\sqrt{s} = 13$ TeV</td>
<td>30 nb$^{-1}$ (MB)</td>
</tr>
<tr>
<td></td>
<td>6 pb$^{-1}$ (HM, top 0.1%)</td>
</tr>
</tbody>
</table>

SQM22, Busan, Korea

Thermal radiation and direct photon production in Pb–Pb and pp with dielectrons
Full Run 2 datasets analyzed
 - Factor 3.8 in MB compared to previous publication
 - π^0 and η measured at $\sqrt{s} = 13$ TeV in MB

\rightarrow Reduced the sys. unc. of the hadronic cocktail
 - Cocktail reproduces data $p_{T,ee} > 1$ GeV/c within uncertainty.
Full Run 2 datasets analyzed
- Factor 4.4 in HM compared to previous publication

- π^0 and η measured at $\sqrt{s} = 13$ TeV in the same multiplicity class
 Parallel talk, Adrian Nassirpour 13 Jun

→ Reduced the syst. unc. of the hadronic cocktail

- HF cocktail: applied p_T dependent multiplicity scaling factor

→ The scaling factor dominates the cocktail unc. at IMR

- Within uncertainty, no excess w. r. t. data

pp at $\sqrt{s} = 13$ TeV in high-multiplicity events - Invariant mass spectrum
Extraction of direct photon fraction r

- Relation is given by Kroll-Wada formula
 \[\frac{d^2N_{ee}}{dm_{ee}} = \frac{2\alpha}{3\pi m_{ee}} \sqrt{1 - \frac{4m_{ee}^2}{m_{ee}^2}} \left(1 + \frac{2m_{ee}^2}{m_{ee}^2} \right)^2 \left(1 - \frac{m_{ee}^2}{M_h^2} \right)^3 \frac{dn_{\gamma}}{m_{ee}} \]

 N.M. Kroll and W. Wada PR 98 (1955) 1355

 Process dependent form factor
 \[\rightarrow \text{Hadrons} : 0, \text{Virtual photons} : 1 \]

- Exploit the difference to separate virtual photon and dielectron from Dalitz decay

- Yield fitted with:
 \[f = r \times f_{\text{dir}} + (1-r) \times f_{\text{LF}} + f_{\text{HF}} \]

 Virtual-photon template and
 Light flavor

 where \[r = \left(\frac{\gamma_{\text{dir}}^*/\gamma_{\text{incl}}^*}{m_{ee}} \right) m_{ee} \rightarrow 0 = \left(\frac{\gamma_{\text{dir}}/\gamma_{\text{incl}}}{} \right) \]

 Heavy flavor

- Assumption only valid for $p_{T,ee} \gg m_{ee} \rightarrow$ Extract r at $p_{T,ee} > 1 \text{ GeV}/c$

ALICE Preliminary
0–10% Pb–Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
$0.2 < p_{T,e} < 10 \text{ GeV}/c, |\eta_e| < 0.8$
$1.2 < p_{T,ee} < 1.6 \text{ GeV}/c$

\[
\chi^2/\text{NDF} = 11.34/4
\]

\[r = 0.039 \pm 0.020 \text{ (stat.)} \]
Direct photon fraction in pp collisions at $\sqrt{s} = 13$ TeV

- Much smaller statistical and systematic uncertainties compared with previous publication
- No significant increase with respect to pQCD photons in MB
- No sign of increase direct photon fraction in HM w. r. t. MB
Central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV - Invariant mass spectrum

- Data compared with hadronic cocktail with $<N_{\text{coll}}>$ scaled heavy flavor (HF) measured in pp at $\sqrt{s} = 5.02$ TeV
 - Vacuum baseline
 - Cocktail underestimates data slightly at IMR
 - HF cocktail modified by CNM and hot medium effect
 - Vacuum baseline $\times R_{AA}(c/b \rightarrow e^\pm)$
 - Data is consistent with HF suppression & thermal radiation from QGP

\[\text{Phys. Rev. C 102 (2020) 055204} \]

\[\text{Phys. Lett. B 804 (2020) 135377} \]
Central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV – Extraction of prompt thermal signal

- Difficulty in extraction of prompt thermal e^+e^- from QGP at IMR due to huge non-prompt correlated HF background
- Separate prompt and non-prompt sources via impact parameter

\[\text{DCA}_{ee} = \sqrt{\frac{\text{DCA}_1^2 + \text{DCA}_2^2}{2}} \]

- Expectations: prompt + non-prompt ($c\bar{c}$ and $b\bar{b}$)
 - $\text{DCA}_{ee} \text{(prompt)} < \text{DCA}_{ee} \text{ (c\bar{c})} < \text{DCA}_{ee} \text{ (b\bar{b})}$

Poster, Jerome Jung, 14 Jun

Thermal radiation and direct photon production in Pb–Pb and pp with dielectrons

ALICE Preliminary

- Data
- Cocktail sum
- $c\bar{c} \rightarrow e^+e^-$ (POWHEG+N_{coll}+R$_{AA}^{c\bar{c}\rightarrow e^+e^-}$)
- $b\bar{b} \rightarrow e^+e^-$ (POWHEG+N_{coll}+R$_{AA}^{b\bar{b}\rightarrow e^+e^-}$)
- $J/\psi \rightarrow e^+e^-$, $J/\psi \rightarrow \gamma e^+e^-$
- in-med. hadronic [Rapp]
- QGP radiation [Rapp]
- Upper limit at 90% C.L.
Central Pb–Pb collisions at √s_{NN} = 5.02 TeV – Extraction of prompt thermal signal

- Fix $b\bar{b}$ contribution via fit at high DCA_{ee}
 - $b\bar{b} = 0.74 \pm 0.24 \text{ (stat.)} \pm 0.12 \text{ (syst.)}$
 w.r.t. N_{coll} scaling
- Simultaneous fit $c\bar{c}$ and prompt contributions
 - $c\bar{c} = 0.43 \pm 0.40 \text{ (stat.)} \pm 0.12 \text{ (syst.)}$
 w.r.t. N_{coll} scaling
 - prompt $= 2.64 \pm 3.18 \text{ (stat.)} \pm 0.29 \text{ (syst.)}$
 w.r.t. R. Rapp
- Results agree with:
 - Charm suppression
 - Thermal contribution in the order of Rapp/PHSD

Poster, Jerome Jung, 14 Jun

![Graph showing the relationship between prompt and prompt contributions with Rapp.](attachment:image)

ALICE Preliminary
0-10% Pb–Pb $\sqrt{s_{NN}} = 5.02$ TeV
$1.1 < m_{ee} < 2.6 \text{ GeV} / c^2$

- DCA_{ee} fit ($\chi^2/ndf = 2.51/6$)
- Syst. unc. of data
- Stat. unc. of fit
- Theory comparison:
 - Thermal R. Rapp
 - Thermal PHSD

New
Central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV - Direct photon excess ratio R_γ

- Direct photon excess ratio: $R_\gamma = \gamma_{\text{incl}}/\gamma_{\text{decay}}$
- Two methods: real photon analysis via gamma conversion (PCM) in the detector, virtual photon analysis (dielectron)
- Both analyses are in good agreement.
Central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV - Direct photon spectrum

- Direct photon excess ratio: $R_\gamma = \gamma_{incl}/\gamma_{decay}$
- Two methods: real photon analysis via gamma conversion (PCM) in the detector, virtual photon analysis (dielectron)
- Both analyses are in good agreement.
- Direct photon yield constructed as $\gamma_{dir} = \gamma_{incl} \times r$

Inclusive photon spectrum from PCM

New
Central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV - Direct photon spectrum

- Direct photon yield compared to theoretical models

 Thermodynamic models: C.Gale/H.vanHees/P.Dasgupta

 Microscopic transport model (PHSD): O. Linnyk

- All models agree with the data but some tends to overestimate them at low p_T

![Graph showing direct photon spectrum](ALICE Preliminary 0–10% Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV)

Data
- C.Gale et al., PRC 105, 014909
- H.van Hees et al., NPA 933, 256
- O.Linnyk et al., PRC 92, 054914
- P.Dasgupta et al., PRC 98, 024911

New

Thermal radiation and direct photon production in Pb–Pb and pp with dielectrons
Future prospects

Run 3 and Run 4

- New ITS
 - Improved vertex resolution
 - Separate HF from prompt e^+e^- sources
- TPC upgrade
 - GEM-based readout
 - Continuous readout in Pb–Pb \sim 50 kHz
- Pb–Pb
 - Increase factor $100 \sim 13 \text{ nb}^{-1}$ from entire Run 3 + Run 4
- pp
 - Future High-energy pp program (2022 -)
 ALICE-PUBLIC-2020-005 CERN-LHCC-2020-018; LHCC-G-179
 - Min. bias pp \sim 200 pb$^{-1}$
 - High mult pp \sim 3 pb$^{-1}$
Summary

- **pp at $\sqrt{s} = 13$ TeV in MB and HM events**
 - Within uncertainty no excess w.r.t. cocktail at IMR in HM
 - No significant increase with respect to pQCD photons in MB
 - No sign of increase direct photon fraction in HM w.r.t MB

- **Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV in central collision**
 - First DCA_{ee} analysis to separate thermal radiation & HF background
 - First measurement of direct photon spectrum with virtual photon method

- **Run 3 & Run 4 and beyond**
 - With upgraded ITS and TPC, much more statistics will be expected
 - ALICE enters Quantitative/Precision era

Plenary talk, Sarah Porteboeuf, 16.Jun
Plenary talk, Raphaëlle Bailhache, 16.Jun