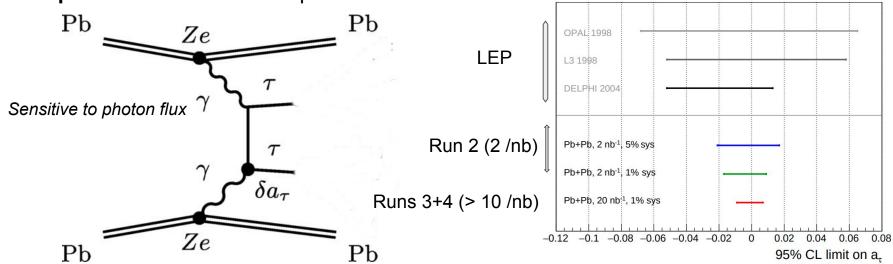


(submitted to PRL)

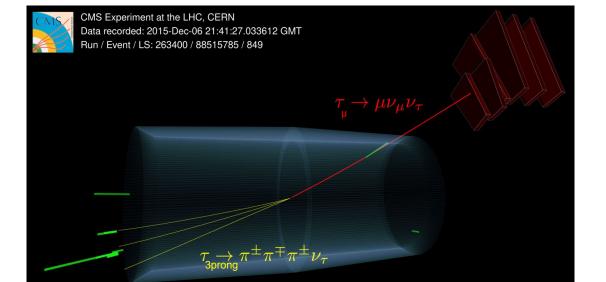

Office of Science

GK Krintiras (cern.ch/gkrintir) for the CMS Collaboration

Overview of the $\gamma\gamma \rightarrow \tau\tau$ process

- **Promising candidate** for the $a_{\tau} = (g_{\tau} 2)/2$ determination
 - "using a large heavy ion collider" for g_{τ} -2 suggested since 90s
 - cross section in UPC receives a **Z**⁴ enhancement relative to pp
- LHC could **improve** the sensitivity on a_{τ} relative to LEP

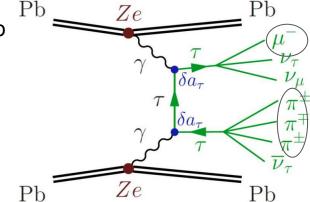
• probe the anomalous T lepton electric moment too like BELLE


au lepton photoproduction in ultraperipheral collisions. (UPC)

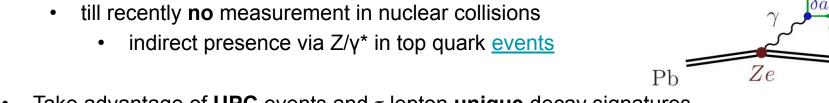
Phys. Lett .B **809** (2020) 135682 (2002.05503) Phys. Rev. D **102** (2020) 113008 (1908.05180)

τ's are multifaceted

- ττ signal regions can be then defined based on the lepton and/or hadron multiplicity
 - dilepton: the lowest reco efficiency
 - $1\ell + 1$ track: main bkg due to $\mu\mu$, ee
 - $1\ell + 3$ tracks: clean with high enough yield


All channels needed for ultimate precision

CMS-PHO-EVENTS-2022-003-2


How to observe the $\gamma\gamma \rightarrow \tau\tau$ process at LHC

- The total $\gamma\gamma \to \tau\tau$ cross section is of O(1 mb) \to O(1 M) with 2 /nb
 - we expected <100 1µ+3 tracks events within acceptance
- τ lepton reco **challenging** at low-p_τ (<20 GeV)
 - till recently **no** measurement in nuclear collisions
 - indirect presence via Z/γ* in top quark events

How to observe the $\gamma\gamma \rightarrow \tau\tau$ process at LHC

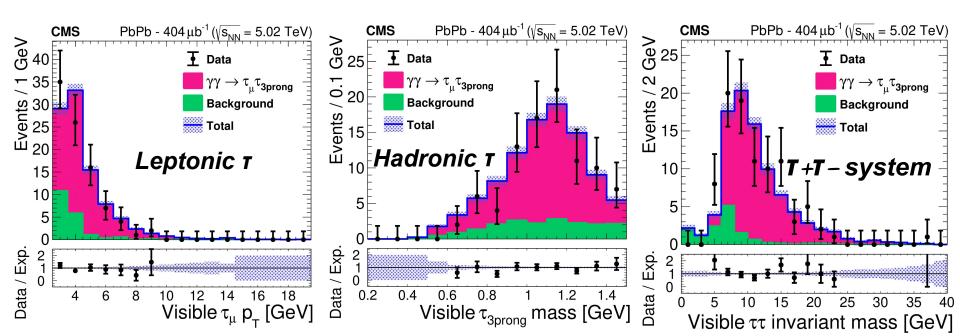
- The total $\gamma\gamma \to \tau\tau$ cross section is of O(1 mb) \to O(1 M) with 2/nb $^{\mathrm{Pb}}$
 - we expected <100 1µ+3 tracks events within acceptance
- τ lepton reco challenging at low-p_τ (<20 GeV)

- Take advantage of UPC events and τ lepton unique decay signatures
 - low track multiplicity (N_{ch}), UPC triggers, and "exclusivity" requirements
 - single lepton triggers
 - no activity in forward hadron (HF) calorimeters above noise threshold
- Aim to establish $\gamma\gamma \to \tau\tau$ at LHC as the first crucial step during a dedicated physics program
 - using PbPb collisions in 2015 (~0.5 /nb)
 - followed by the inclusion of 2018 (~1.5 /nb)
 - Runs 3+4 projection in the realm of the joint ATLAS+CMS <u>Snowmass22</u> effort

Pb

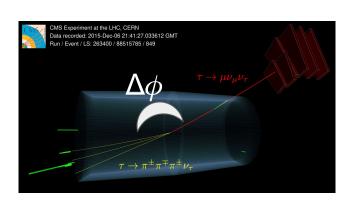
da

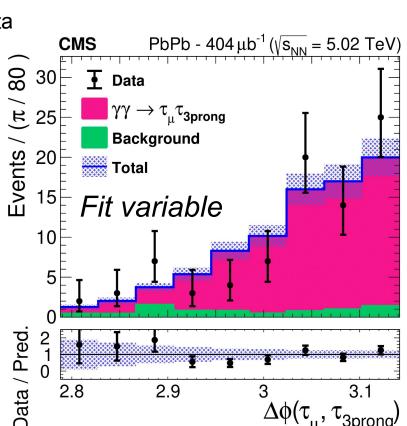
Our event **selection** and MC **simulation**


- **Trigger:** 1 muon & + >=1 track in the pixel detector + no HF activity on either side
- Optimized offline event selection (cf Table)
- Our **signal region** is 1 muon & N_{ch}=3
 - other N_{ch} and HF activity regions used in **bkg estimation**
- MC simulation for **signal and validation** (main bkg, efficiency)

Object	Criteria
μ	$p_T > 3.5$ GeV for $ \eta < 1.2$ $p_T > 2.5$ GeV for $1.2 < \eta < 2.4$
π^\pm	$p_T > 0.5$ GeV for leading π^\pm $p_T > 0.3$ GeV for (sub-)sub-leading π^\pm $ \eta < 2.5$
$ au_{3prong}$	$p_T^{vis} > 0.2~{ m GeV}$ $0.2~{ m GeV} < m_{\pi\pi\pi} < 1.5~{ m GeV}$

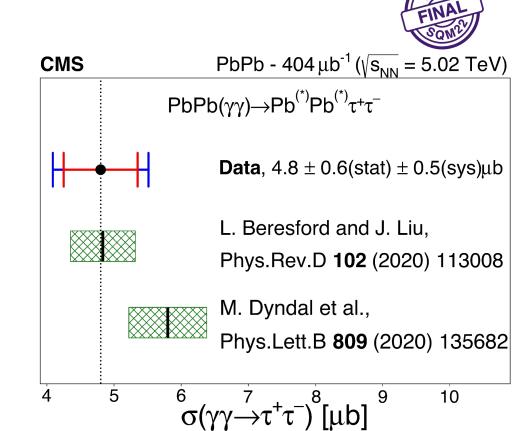
Low-p muons


- Data to exp companison. Control plots in the signal region
 - Very good agreement between data & expectations
 signal MC is scaled to the integrated luminosity
 - we're in an almost bkg-free phase space region(!)
 - unambiguous reconstruction of the T+T- system



Signal yield estimation

- Binned likelihood fit to a discriminating variable
- Angular separation ($\Delta \phi$) between leptonic and hadronic candidates
 - MC signal (peaky) and bkg template (flat) from data
- Number of observed post-fit signal events: 77 ± 12
- Observed significance is more than 5σ
 - taking into account systematic uncertainties
 - affecting the rate with log-normal priors
 - affecting the shape with Gaussian prior



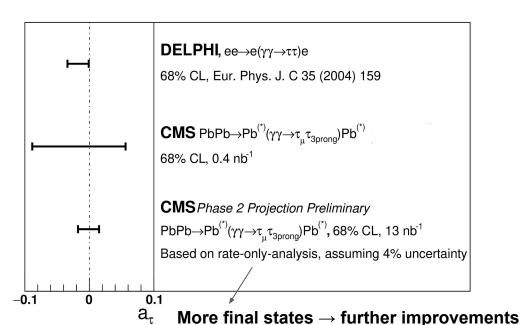
Cross section measurement

- Extra ingredients needed
 - $L = 404 / \mu b$
 - $B\tau_{u} = 17.39\%$
 - B $\tau_{\text{3 prong}}$ =14.55%
 - efficiency (ϵ) from MC = 78.5%

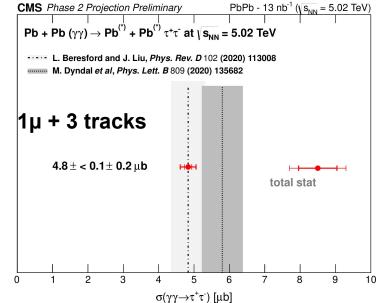
$$\sigma(\gamma\gamma \to \tau^+\tau^-) = N_{\rm sig}/(2\epsilon \,\mathcal{L}_{\rm int} \,\mathcal{B}_{\tau_\mu} \,\mathcal{B}_{\tau_{\rm 3prong}})$$

Overview of uncertainties

- Statistically dominated (13%)
- Systematic wise (9.7%) the **dominant sources** are related to
 - muons (trigger efficiency)
 - pion efficiency
 - luminosity
- Total uncertainty comparable to the current theory uncertainty
 - difficult to discriminate between existing models
 - model-dependent limits on anomalous moments can be set


Source	Uncertainty (%)
Muon efficiency	6.7
Integrated luminosity measurement	5
Pion efficiency	3.6
Simulation sample size (bin-by-bin)	3.0
Simulation sample size (efficiency)	1.1
HF scale effect on background shape	0.9
τ lepton branching fraction	0.6
Effect of n_{ch} on background shape	0.2
Total (systematic)	9.7

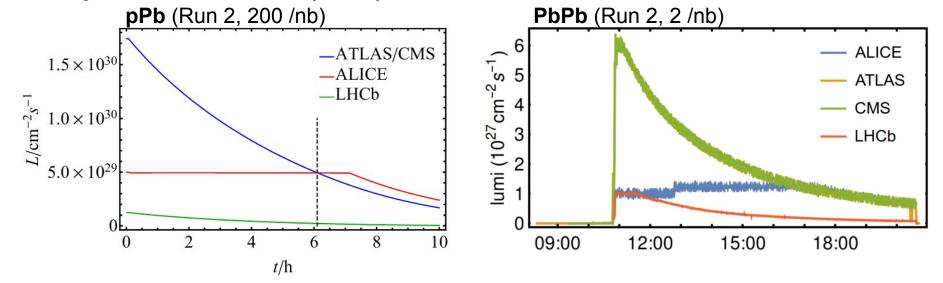
Constraints on a_{τ} and **expected performance** at HL-LHC


- Using the theo calculation of $\sigma(\gamma\gamma \to \tau\tau)$ as a function of a_{τ} –scale only
 - model-dependent measurements at LHC can be obtained

CMS NEW SQM2

- We expect a total uncertainty well below the current theory uncertainty
 - we can discriminate between existing models
 - projected limit at HL-LHC competing with LEP

ATLAS+CMS Snowmass22 WhitePaper



Outlook

- LHC heavy ion collision (HIC) data are a gamechanger
 - accelerator performance well surpassed any initial expectations
 - exploiting HIC is a <u>unique and complementary means</u> to search for BSM phenomena
 - but also to **improve** existing models
- A dedicated physics program for studying a_{τ} is initiated in CMS
 - with 2015 CMS data we establish the signal
 - $\gamma\gamma \rightarrow \tau\tau$ signal region defined based on **lepton** and **track** multiplicity
 - 1µ + 3 tracks
 - further improvements with inclusion of more data, final states, & improved techniques
 - HL-LHC baseline projection done for the expected limits on a_{τ}
- Ample room for cross-experiment collaboration
 - existing measurements can be used for further combinations of HIC data at LHC arXiv:2206.05192 (submitted to PRL)

Heavy ion collisions (HIC) at LHC

- LHC collided **more** types of beam, than originally foreseen, with **better** than expected performance
 - o In practice, we've come close to the "HL-LHC" performance with pPb and PbPb collisions
- Opens up further opportunities for <u>probes</u> not accessible so far due to lower luminosity and/or energy
 - o two one-month runs would be needed to reach the Runs 3+4 target of 1200 /nb in pPb
 - o five one-month runs would be needed to reach the Runs 3+4 target of 13 /nb in PbPb
 - o **all 4** experiments participate
 - makes luminosity sharing far more challenging than high-pileup pp running
 - **complementary** phase space regions, cross checks