A truly cylindrical inner tracker for ALICE

Alperen YÜNCÜ on behalf of ALICE

June 15, 2022

ALICE

Detector and main goals

- Study of QGP in heavy-ion collisions at LHC
 - i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (≲1 GeV/c) particle reconstruction

Current Inner Tracking System (ITS2)

- ITS2 is expected to perform according to specifications or even better
- The inner barrel is ultra-light (0.35% X₀ per layer) but still most of the material comes from supports ⇒ further improvements seem possible
- Key questions:
 - Can we get closer to the interaction point?
 - Can we reduce the meterial budget even further?

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling

イロト イヨト イヨト イヨト

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²

イロト イヨト イヨト イヨト

Air cooling

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling

Removal of water cooling

Possible if power consumption stays below 20 mW/cm²

イロト イヨト イヨト イヨト

- Air cooling
- 0.31 % X₀ per layer

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²

- Air cooling
- 0.31 % X₀ per layer
- Removal of the circuit boards (power+data)
 - Possible if integrated on chip

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²

- Air cooling
- 0.31 % X₀ per layer
- Removal of the circuit boards

(power+data)

- Possible if integrated on chip
- 0.14 % X₀ per layer

- Observations:
 - 0.35 % X₀ per layer
 - Si makes only 1/7th of total material
 - Irregularities due to support/cooling
- Removal of water cooling
 - Possible if power consumption stays below 20 mW/cm²
 - Air cooling
 - 0.31 % X₀ per layer
- Removal of the circuit boards

(power+data)

- Possible if integrated on chip
- 0.14 % X₀ per layer
- Removal of mechanical support
 - Benefit from increased stiffness by bending Si wafers into cylinderical shape

•

Observations:

ITS3 detector concept

Beam pipe Inner/Outer Radius (mm)	16.0/16.5		
IB Layer Parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	18.0	24.0	30.0
Length (sensitive area) (mm)	280		
Pseudo-rapidity coverage	±2.5	±2.3	±2.0
Active area (cm ²)	610	816	1016
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94
Number of sensors per layer	2		
Pixel size (µm ²)	O (10 x 10)		

Key ingredients:

- 280 mm wafer-scale sensors, fabricated using stitching (Tower Partners Semiconductor (TPSCo) 65 nm CMOS Imaging Sensor (CIS) process)
- Thinned down to 20-40 μm (0.02-0.04% X₀), making them flexible
- Bent to the target radii

Mechanically held in place by carbon foam ribs

Key benefits:

- Extremely low material budget: 0.02-0.04% X₀ (beampipe: 500 µm Be: 0.14% X0)
- Homogeneous material distribution: negligible systematic error from material distribution

THE WHOLE DETECTOR WILL COMPRISE SIX (!) SENSORS (CURRENT ITS IB: 432) AND BARELY ANYTHING ELSE

ITS3 performance

- Improvement on pointing resolution is factor of 2 over all momenta.
- Large improvement on tracking efficiency especially for low momenta.

< ロ > < 同 > < 回 > < 回 >

Measurements that will benefit from the ITS3 Upgrade

- Low-mass dileptons
- Beauty-strange mesons
 - exclusive reconstruction of B_s^0
 - non-prompt D_s^+ (50 % from $B_s^{0,+}$ and 50 % from B_s^0)
- Beauty baryons
 - non-prompt Λ_c^0
 - exclusive reconstruction of Λ⁰_b
- Charm strange and multi-strange baryons
 - $\blacktriangleright \exists_c^0(\mathsf{cds}), \exists_c^+(\mathsf{cus}), \Omega_c^0(\mathsf{css})$
- Searches for light charm hypernuclei
 - bound state of a Λ_c^+ and a neutron (c-deuteron)
 - bound state of a Λ_c^+ and a deuteron (c-triton)

Expected performance: B_S^0 mesons

- Study beauty-quark hadronisation mechanism
- B⁰_s production expected to be enhanced
- hadronisation of beauty quarks via recombination and enhanced strange-quark production in the QGP

- Improvement by a factor 2 in significance with ITS3
- provide access to B⁰_s measurement at very low p_T

< ロ > < 同 > < 回 > < 回 >

PLB 735, 445-450 (2014)

Alperen YÜNCÜ

SQM2022

Expected performance: D_S^+ Mesons

- Non-prompt D_s^+ from *B* decays:
 - even if not direct measurement, sensitive to B⁰_s
 - larger statistical precision than exclusive B⁰_s reconstruction
- Comparison between non-prompt D⁺_s and non-strange D mesons sensitive to beauty-quark hadronisation and strangeness enhancement
- Non-prompt D⁺_s azimuthal anisotropy
 - Participation of beauty quarks in the collective motion and possible thermalisation in the QGP

- Information about beauty-quark diffusion coefficient in the QGP
- ITS3:
 - sensitivity to discriminate azimuthal anisotropy for prompt and non-prompt D⁺_s (charm vs. beauty)

Questions:

- Can silicon be bent without breaking?
- Are ASICs still functional in bent chip?
- Can wafer-scale, thinned sensors be integrated without additional support structure?
- Can air cooling be effective enough?
- Can 280 mm long silicon sensor be produced?

< ロ > < 同 > < 回 > < 回 >

Flexibility of silicon

- Sensors at the current thickness(50 μm) are even flexible enough (The smallest radius in ITS3 is 18 mm)
- The thinner sensor can be bend smaller radius.

ITS3 TARGET RADIUS AND THICKNESS ARE VERY FEASIBLE

Alperen YÜNCÜ

SQM2022

Sensor characterisation

- For last 2 years, more than 10 test beams have succesfully performed at DESY, SPS, PS...etc
- In these testbeams we have tested several setups:
 - bent ALPIDEs with several radii
 - μITS3, a mock-up for ITS3
 - MLR1 test systems

▲ 同 ▶ | ▲ 三 ▶

Testbeam: June 2020 (DESY)

doi.org/10.1016/j.nima.2021.166280

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale (10⁻¹ to 10⁻⁵) to show fully efficient rows. Each data point corresponds to at least 8k tracks.

- Bent ALPIDE has high efficiency
- ASICs are functional in bent ALPIDE

Testbeam: April 2021 (DESY)

 Still has high efficiency on target radii

イロト イヨト イヨト イヨ

SQM2022

- µITS3 mock-up of final ITS3
 - 6 ALPIDE bent to ITS3 target radii
 - Experience with handling thin, bent silicon was gained
- Also used with Cu target in the center, expect to see 120 GeV p-Cu collisions
- Analysis of µITS3 is in progress.

Super ALPIDE

- 9×2 array of ALPIDE chips
- A mock-up sensor to investigate integration and interconnection of large-scale, thinned and bent sensors

Wind Tunnel Cooling Studies

Matrix 20 mW/cm2

- Different power & air speed
- Carbon foam radiator are key for heat removal at periphery
 - L1 and L2 DT < 10°C</p>
 - L0 has relatively larger temperature DT to air (further optimization on L0 Carbon foam layout)
 - Power density concentrated on 2.5 mm periphery

イロト イヨト イヨト イヨ

SQM2022

MLR1, Test Structures for 65nm

- Tower Partners Semiconductor (TPSCo) 65 nm CMOS Imaging Sensor (CIS) Process
- Contained several test chips
 - radiation test structures
 - pixel test structures
 - DPTS
 - APTS
 - CE65
 - pixel matrices
 - analog building blocks (band gaps, LVDS drivers, etc)

4 A N

- Characterisation is succesful
- High efficiency is confirmed

Stiching

- Stitching used to connect metal traces for power distribution and long range on-chip interconnect busses for control and data readout
- Primary goals:
 - Learn stitching to make a charged-particle detector
 - Interconnect power and signals on wafer scale design
 - Learn about yield
 - Study power, leakage, spread, noise, speed

Alperen YÜNCÜ

update on main milestones

MLR: multiple layer per reticle, ER: engineering run,

BM: breadboard module, EM: engineering module, QM: qualification module, FM: final module

э

イロト イヨト イヨト イヨト

- ITS3 replaces the 3 innermost layers of ALICE ITS2 by a bent, wafer scale MAPS detector which reduces material budget by factor of 7.
- Major milestones have been passed such as:
 - Full size mechanical integration prototypes exist
 - Air cooling concept verified by full size mockup
 - Bending of thinned sensors verified
 - Tower Partners Semiconductor 65 nm technology qualified
 - Building blocks and basic pixel matrices efficient
 - Successful beam characterisation of pixel sensor
- Next step to prove stitching and power/signal distribution on large structures