Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at RHIC

Yicheng Feng (for the STAR Collaboration)

Purdue University

June 14, 2022

Supported in part by the .S. DEPARTMENT OF Office of FNERGY

Science

Yicheng Feng (for the STAR Collaboration)

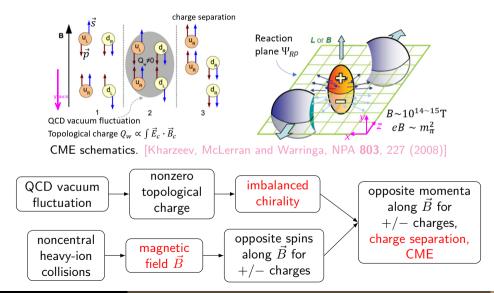
Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at RHIC

1 / 19

Outline

- 2 Isobar $\Delta\gamma$ nonflow baseline
- \bigcirc Isobar R variable understanding

The Chiral Magnetic Effect (CME)



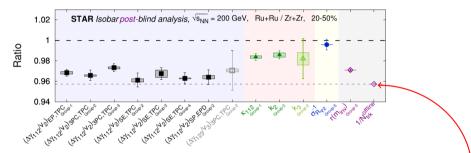
Yicheng Feng (for the STAR Collaboration)

Outline

2 Isobar $\Delta\gamma$ nonflow baseline

 $egin{array}{c} egin{array}{c} egin{array}$

Isobar Results



Post-blind results from STAR isobar analysis [STAR, PRC 105, 014901 (2022)].

- ► Isobar expectation: $\Delta \gamma / v_2$ in ${}^{96}_{44}$ Ru + ${}^{96}_{44}$ Ru is larger than in ${}^{96}_{40}$ Zr + ${}^{96}_{40}$ Zr.
- ▶ The main reason that the observed isobar ratio is less than unity is the multiplicity difference.
- The better quantity is $N\Delta\gamma/v_2$. Its naive background baseline is unity.
- Isobar data are all above this naive baseline. Investigate nonflow effects.

• The CME-sensitive observable $\Delta \gamma \equiv C_3/v_2^*$:

$$C_{3,\text{os}} = \langle \cos(\phi_{\alpha}^{\pm} + \phi_{\beta}^{\mp} - 2\phi_c) \rangle,$$

$$C_{3,\text{ss}} = \langle \cos(\phi_{\alpha}^{\pm} + \phi_{\beta}^{\pm} - 2\phi_c) \rangle,$$

$$C_{3} = C_{3,\text{os}} - C_{3,\text{ss}}$$

OS: opposite-sign pair SS: same-sign pair

The asterisk (*) on v_2 indicates it is the measured v_2 containing nonflow

• $\Delta\gamma$ contains CME and a major background proportional to v_2 (true v_2 flow)

Nonflow Contribution to Isobar Baseline

The naive baseline of unity would be correct if there was no nonflow. Nonflow correlations will cause the baseline to deviate from unity.

• Nonflow in
$$v_2^*$$
: $v_2^{*2} = v_2^2 + v_{2,nf}^2$, $\epsilon_{nf} \equiv v_{2,nf}^2/v_2^2$

Note: ϵ is not eccentricity

C₃ is composed of flow-induced background (major), 3p nonflow correlations (minor), and possible CME (not written out) [Y. Feng, et al., PRC 105, 024913 (2022)]:

$$C_3 = \frac{N_{2p}}{N^2} C_{2p} v_{2,2p} v_2 + \frac{N_{3p}}{2N^3} C_{3p} = \frac{v_2^2 \epsilon_2}{N} + \frac{\epsilon_3}{N^2},$$

$$\frac{N\Delta\gamma}{v_2^*} = \frac{NC_3}{{v_2^*}^2} = \frac{\epsilon_2}{1+\epsilon_{\rm nf}} + \frac{\epsilon_3}{Nv_2^2(1+\epsilon_{\rm nf})} = \frac{\epsilon_2}{1+\epsilon_{\rm nf}} \left(1 + \frac{\epsilon_3/\epsilon_2}{Nv_2^2}\right)$$

- 2-particle (2p) nonflow (e.g., resonance): $C_{2p} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} 2\phi_{2p}) \rangle$, $\epsilon_2 \equiv \frac{N_{2p}v_{2,2p}}{Nv_2}C_{2p}$
- 3-particle (3p) nonflow (e.g., jets): $C_{3p} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} 2\phi_c) \rangle_{3p}$, $\epsilon_3 \equiv \frac{N_{3p}}{2N}C_{3p}$
- $N \approx N_+ \approx N_-$ is POI (particle of interest) mult. N_{2p} (N_{3p}) is 2p (3p) nonflow pair (triplet) mult.

Isobar ratio:

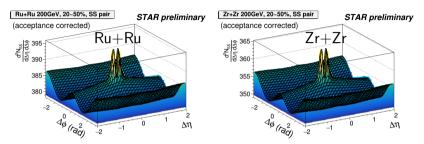
$$\frac{(N\Delta\gamma/v_2^*)^{\mathsf{Ru}}}{(N\Delta\gamma/v_2^*)^{\mathsf{Zr}}} \equiv \frac{(NC_3/v_2^{*2})^{\mathsf{Ru}}}{(NC_3/v_2^{*2})^{\mathsf{Zr}}} = \frac{\epsilon_2^{\mathsf{Ru}}}{\epsilon_2^{\mathsf{Zr}}} \cdot \frac{(1+\epsilon_{\mathsf{nf}})^{\mathsf{Zr}}}{(1+\epsilon_{\mathsf{nf}})^{\mathsf{Ru}}} \cdot \frac{\left[1+\epsilon_3/\epsilon_2/(Nv_2^2)\right]^{\mathsf{Ru}}}{\left[1+\epsilon_3/\epsilon_2/(Nv_2^2)\right]^{\mathsf{Zr}}}$$
$$\approx 1 + \frac{\Delta\epsilon_2}{\epsilon_2} - \frac{\Delta\epsilon_{\mathsf{nf}}}{1+\epsilon_{\mathsf{nf}}} + \frac{\epsilon_3/\epsilon_2/(Nv_2^2)}{1+\epsilon_3/\epsilon_2/(Nv_2^2)} \left(\frac{\Delta\epsilon_3}{\epsilon_3} - \frac{\Delta\epsilon_2}{\epsilon_2} - \frac{\Delta N}{N} - \frac{\Delta v_2^2}{v_2^2}\right)$$

 $\Delta X = X^{\rm Ru} - X^{\rm Zr}$

Need ϵ_{nf} , ϵ_2 , ϵ_3 for background estimate

$$\begin{array}{l} \bullet \ \ \epsilon_{\rm nf} \equiv \frac{v_{2,\rm nf}^2}{v_2^2} = \frac{v_2^{*\,2} - v_2^2}{v_2^2} \\ \bullet \ \ \ \epsilon_2 \equiv \frac{C_{2\rm p}N_{2\rm p}v_{2,\rm 2\rm p}}{Nv_2} = \frac{N_{2\rm p}v_{2,\rm 2\rm p}}{Nv_2} \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{\rm 2\rm p}) \rangle \\ \bullet \ \ \ \ \epsilon_3 \equiv \frac{C_{3\rm p}N_{3\rm p}}{2N} = \frac{N_{3\rm p}}{2N} \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle_{\rm 3p} \end{array}$$

Nonflow Estimates (a) Nonflow to v_2^* : measurement of ϵ_{nf}



- $0.2 < p_T < 2.0 \text{ GeV}$
- $|\eta| < 1$
- \bullet Centrality 20-50% defined by POI multiplicity
- Mixed-event acceptance corrected

Fit function:

 $f(\Delta\eta,\Delta\phi) = \begin{array}{c} \mathsf{Nearside} \\ A_1G_{\mathrm{NS},W}(\Delta\eta)G_{\mathrm{NS},W}(\Delta\phi) + A_2G_{\mathrm{NS},N}(\Delta\eta)G_{\mathrm{NS},N}(\Delta\phi) + A_3G_{\mathrm{NS},D}(\Delta\eta)G_{\mathrm{NS},D}(\Delta\phi) \end{array}$

$$+ \frac{B}{2-|\Delta\eta|} \operatorname{erf}\left(\frac{2-|\Delta\eta|}{\sqrt{2}\sigma_{\Delta\eta,AS}}\right) G_{AS}(\Delta\phi \pm \pi) + \frac{DG_{RG}(\Delta\eta)}{Awayside} + \frac{C[1+2V_1\cos(\Delta\phi)+2V_2\cos(2\Delta\phi)+2V_3\cos(3\Delta\phi)]}{\operatorname{Ridge}}$$

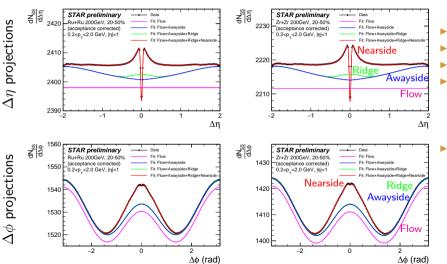
 $G_s(x)$ Gaussian function, $V_n = v_n^2$ assumed η -independent. NS-nearside, AS-awayside, RG-ridge; W-wide, N-narrow, D-dip.

Yicheng Feng (for the STAR Collaboration)

Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at RHIC

Nonflow Estimates (a) Nonflow to v_2^* : measurement of ϵ_{nf}

Ru+Ru



- Data: markers in black.
- Flow: flow component in fit.
- Flow+Awayside
- Flow+Awayside+Ridge: the $\Delta \phi$ ridge is a 1D Gaussian centering at $\Delta \eta = 0$, which is small and independent from $\Delta \phi$.
- Flow+Awayside+Ridge+ Nearside: the total fit function, where the nearside includes 3 2D Gaussians centering at $\Delta \eta = 0$ $\Delta \phi = 0$, which are the wide, the narrow, and the dip.

7r+7r

	STAR preliminary	Ru+Ru	Zr+Zr	
SS	fit parameter C	381.651 ± 0.011	351.988 ± 0.009	
	fit parameter $V_2=v_2^2$	0.0029716 ± 0.0000029	0.0028668 ± 0.0000025	
	$\langle \cos(2\Delta\phi) \rangle_{\rm ss} \ (\Delta\eta > 0.05)$	0.0035968 ± 0.0000010	0.0034930 ± 0.0000010	
inclusive	$\left<\cos(2\Delta\phi)\right> = v_2^{*2} \ (\Delta\eta > 0.05)$	0.0037161 ± 0.0000007	0.0036088 ± 0.0000007	
	nonflow $U = \langle \cos(2\Delta\phi) angle - V_2$	0.0007446 ± 0.0000030	0.0007420 ± 0.0000026	
	$\epsilon_{\sf nf} = U/V_2$	$(25.06 \pm 0.10)\%$	$(25.88 \pm 0.09)\%$	

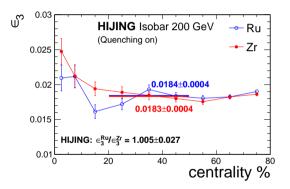
• Nonflow in v_2^{*2} is $\sim 25\%/(1+25\%) = 20\%$.

- The nearside wide Gaussian $(A_1 \text{ term})$ is dominant.
- We take half of it as systematics:

 $\Delta \epsilon_{\mathsf{nf}} = (-0.82 \pm 0.13 \mp 0.30)\%, \ -\Delta \epsilon_{\mathsf{nf}} / (1 + \epsilon_{\mathsf{nf}}) = (0.65 \pm 0.11 \pm 0.22)\%.$ $\Delta v_2^2 / v_2^2 = \Delta V_2 / V_2 = (3.7 \pm 0.1 \mp 0.3)\%.$

- ► ϵ_2 can be obtained from ZDC measurement (no nonflow, assuming negligible CME) [STAR, PRC 105, 014901 (2022)] $\epsilon_2 = \frac{N\Delta\gamma\{\text{ZDC}\}}{n_0\{\text{ZDC}\}} \approx 0.57 \pm 0.04 \pm 0.02$ (tracking efficiency ~ 80%)
- ▶ The $\Delta \epsilon_2$ precision from ZDC is too poor: $\Delta \epsilon_2 / \epsilon_2 \approx (2.3 \pm 9.2)\%$, but we can estimate it as follows:
 - Assuming $C_{2p}^{Ru} = C_{2p}^{Zr}$, then $\epsilon_2 \propto Nr$, where the pair multiplicity difference $r \equiv \frac{N_{0s} N_{ss}}{N_{os}}$ is precisely measured [STAR, PRC 105, 014901 (2022)] $\Delta \epsilon_2 / \epsilon_2 = \Delta r / r + \Delta N / N = (-2.95 \pm 0.08)\% + 4.4\% = (1.45 \pm 0.08)\%$
 - For a point of reference, AMPT simulation w.r.t. RP gives $\Delta\epsilon_2/\epsilon_2\approx (3.5\pm1.4)\%$

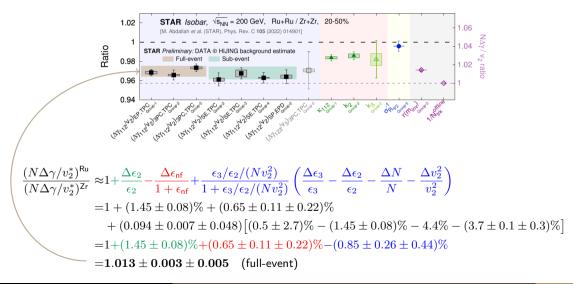
- 3p nonflow study in real data is difficult (work ongoing)
- ▶ We use HIJING simulation (which has no flow) to obtain $\epsilon_3 \approx (1.84 \pm 0.04)\%$, and $\Delta \epsilon_3 / \epsilon_3 = (0.5 \pm 2.7)\%$ (~ 8.6 × 10⁸ events for each isobar).
- ► HIJING without jet quenching gives $\epsilon_3 = (2.24 \pm 0.05)\%$, differing by 22%.
- We assign 50% systematic uncertainty for ε₃ (±0.92%), and assume Δε₃/ε₃ is presently dominated by statistics.



Estimated Background Components for Isobar $N\Delta\gamma/v_2$ Ratio

Quantity		Method	Systematic uncertainty	Full-event value	Sub-event value
Multiplicity $\Delta N/N$	Measured		Negligible	4.4%	4.4%
Flow $\Delta v_2^2/v_2^2$	Measured	Nonflow subtracted as per below	From nonflow syst.	$\Delta v_2^2/v_2^2 = (3.7\pm 0.1\pm 0.3)\%$	$\Delta v_2^2/v_2^2 = (3.7\pm 0.1\pm 0.3)\%$
v_2 nonflow	Measured	$(\Delta\eta,\Delta\phi)$ correlations, experimentally measured	Nonflow~ 25% (full event), dominated by NS wide Gaus; consider $\pm 1/2$ WG as syst. uncertainty	$\begin{split} -\Delta\epsilon_{\rm nf} &= (0.82\pm 0.13\pm 0.30)\%\\ \frac{-\Delta\epsilon_{\rm nf}}{1+\epsilon_{\rm nf}} &= (0.65\pm 0.11\pm 0.22)\% \end{split}$	$\begin{split} -\Delta \epsilon_{\rm nf} &= (0.59 \pm 0.15 \pm 0.27)\% \\ \frac{-\Delta \epsilon_{\rm nf}}{1+\epsilon_{\rm nf}} &= (0.48 \pm 0.12 \pm 0.22)\% \end{split}$
v_2 -induced bkgd: $\epsilon_2 = N\Delta\gamma/v_2$	Measured	Measured by ZDC (assume negligible CME)	Small	$\epsilon_2 = (0.57 \pm 0.04 \pm 0.02)\%$	$\epsilon_2 = (0.79 \pm 0.05 \pm 0.01)\%$
v_2 -induced bkgd difference: $\frac{\Delta \epsilon_2}{\epsilon_2} \sim \frac{\Delta (N_{2p}/N)}{(N_{2p}/N)} = \frac{\Delta (rN)}{rN}$	Measured	$r = (N_{ m os} - N_{ m ss})/N_{ m os}$ experimentally measured	Negligible	$\frac{\Delta \epsilon_2}{\epsilon_2} = (1.45 \pm 0.08)\%$	$\frac{\Delta\epsilon_2}{\epsilon_2} = (1.45 \pm 0.08)\%$
$\begin{array}{l} \mbox{3p contribution to } C_3:\\ \epsilon_3=C_{3{\rm p}}N_{3{\rm p}}/(2N) \end{array}$	Model estimate	HIJING simulations quenching-on	Quenching-on and off difference $\sim 20\%$. Take $\pm 50\%$ as syst. uncertainty	$\epsilon_3 = (1.84 \pm 0.04 \pm 0.92)\%$	$\epsilon_3 = (1.91 \pm 0.09 \pm 0.95)\%$
3p contribution difference: $\Delta\epsilon_3/\epsilon_3$	Model estimate	HIJING simulation quenching-on	Assumed negligible relative to the large stat. uncertainty	$\frac{\Delta \epsilon_3}{\epsilon_3} = (0.5 \pm 2.7)\%$ $\frac{\epsilon_3/\epsilon_2}{Nv_2^2} = 0.104 \pm 0.008 \pm 0.053$	$\frac{\Delta\epsilon_3}{\epsilon_3} = (-1.8 \pm 6.3)\%$ $\frac{\epsilon_3/\epsilon_2}{Nv_2^2} = 0.079 \pm 0.006 \pm 0.040$
background estimate				$1.013 \pm 0.003 \pm 0.005$	$1.011 \pm 0.005 \pm 0.005$

Estimated Background Level for Isobar $N\Delta\gamma/v_2$ Ratio



Outline

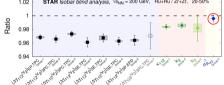
Introduction

- 2 Isobar $\Delta\gamma$ nonflow baseline
- \bigcirc Isobar R variable understanding

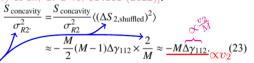
④ Summary

The R variable and its baseline

$$\begin{split} \Delta S &= \langle \sin(\phi^+ - \Psi_2) \rangle - \langle \sin(\phi^- - \Psi_2) \rangle \\ \Delta S &= \langle \sin(\phi^+ - \Psi_2) \rangle - \langle \sin(\phi^- - \Psi_2) \rangle \\ \Delta S &= \langle \sin(\phi^+ - \Psi_2) \rangle \\ C_{\Psi_2}(\Delta S) &= N_{\text{real}}(\Delta S) / N_{\text{shuffled}}(\Delta S) \xrightarrow{\Psi_2 \to \Psi_2 + \pi/2} C_{\Psi_2}^{\perp}(\Delta S) \\ R_{\Psi_2}(\Delta S) &= C_{\Psi_2}(\Delta S) / C_{\Psi_2}^{\perp}(\Delta S) \\ \Delta S &= \frac{\text{shuffled width}}{\text{normalization}} \Delta S' \xrightarrow{\text{resolution}} \Delta S''; \text{ The final observable is } R_{\Psi_2}(\Delta S''). \\ 1.02 &= \text{STAR local rbind analysis, } \sqrt[\psi_{\text{the}}] = 200 \text{ GeV}, \text{ Ru+Ru / Zr-Zr, 20-50\%} \end{split}$$



[Choudhury et al., CPC 46, 014101 (2022)]:



Normalized by shuffled width, so the $N_{\rm ch}$ is already scaled out. That's why the isobar ratio of $1/\sigma_{R_{\Psi_2}}^2$ is closer to unity than $\frac{\Delta\gamma}{v_2}$. STAR has concluded that $1/\sigma_{R\Psi_2}^2$ is approximately proportional to $v_2.$ After v_2 scaling, the isobar ratio is even further below unity.

STAR, PRC 105, 014901 (2022)]:

The scaling relations extracted in Ref. [81] indicate an approximate relation between $1/\sigma_{R_{\Psi_2}}^2$, multiplicity *N* and $\Delta \gamma$, which would imply for this analysis $(\sqrt{\rho_{R_{\Psi_2}}^2} \approx N \Delta \gamma)$ an estimate based on the measurements from this analysis indicates this ratio for Ru + Ru over Zr + Zr to be approximately (.02)

Recent AVFD simulations indicate a linear dependence between $1/\sigma_{R_{\Psi_2}}^2$ and $1/N_{\rm ch}$. An additional $1/N_{\rm ch}$ scaling is applied to $1/\sigma_{R_{\Psi_2}}^2$ making a CME claim [R. Lacey et al., arXiv:2203.10029]. This contradicts the STAR isobar conclusion.

 $1/N_{\rm ch}$ scaling is already incorporated in construction of R correlator. The R correlator explicitly depends on v_2 , giving an apparent $N_{\rm ch}$ dependence. The $1/\sigma_{R \psi_2}^2$ should be scaled by v_2 [F. Wang, arXiv:2204.08450].

17 / 19

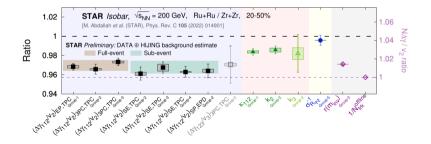
Outline

Introduction

- 2 Isobar $\Delta\gamma$ nonflow baseline
- $\fbox{3}$ Isobar R variable understanding

Summary

- v₂ nonflow and 2p nonflow in C₃ are measured. 3p nonflow in C₃ is estimated by HIJING. Large degree of cancellation between 2p and 3p nonflow.
- ▶ New preliminary isobar background estimate $\frac{(N\Delta\gamma/v_2^*)^{\mathsf{Ru}}}{(N\Delta\gamma/v_2^*)^{\mathsf{Zr}}} \approx (1.013 \pm 0.003 \pm 0.005)$ for full-event, $(1.011 \pm 0.005 \pm 0.005)$ for sub-event.



Backup

Yicheng Feng (for the STAR Collaboration)

Estimate of nonflow baseline for the chiral magnetic effect in isobar collisions at RHIC

Table: fit results on slide 9

STAR preliminary	Ru+Ru	Zr+Zr
A_1	2.967 ± 0.009	2.801 ± 0.007
$\sigma_{\Delta\eta, { m NS}, W}$	0.9878 ± 0.0030	0.9550 ± 0.0025
$\sigma_{\Delta\phi, { m NS}, W}$	0.6329 ± 0.0009	0.6364 ± 0.0008
A_2	15.615 ± 0.011	14.515 ± 0.009
$\sigma_{\Delta\eta, { m NS}, N}$	0.12668 ± 0.00008	0.12839 ± 0.00008
$\sigma_{\Delta\phi, { m NS}, N}$	0.12889 ± 0.00006	0.12977 ± 0.00006
A_3	-72.522 ± 0.018	-66.943 ± 0.016
$\sigma_{\Delta\eta, { m NS}, D}$	0.022288 ± 0.000006	0.022314 ± 0.000005
$\sigma_{\Delta\phi, { m NS}, D}$	0.102971 ± 0.000029	0.102619 ± 0.000027
B	0.2140 ± 0.0037	0.1943 ± 0.0031
$\sigma_{\Delta\eta, { m AS}}$	0.591 ± 0.005	0.589 ± 0.005
$\sigma_{\Delta\phi, { m AS}}$	$1.1 \times 10^5 \pm 18.3 \times 10^5$	$1.4 \times 10^5 \pm 11.7 \times 10^5$
D	0.2759 ± 0.0032	0.2660 ± 0.0026
$\sigma_{\Delta\eta, \mathrm{RG}}$	0.2600 ± 0.0018	0.2524 ± 0.0015
Ċ	381.651 ± 0.011	351.988 ± 0.009
V_1	-0.001916 ± 0.000006	-0.001943 ± 0.000005
V_2	0.0029716 ± 0.0000029	0.0028668 ± 0.0000025
V_3	0.0001766 ± 0.0000012	0.0001842 ± 0.0000011
$\chi^2/{ m NDF}$	1018458.1/159982 = 6.4	1136361.1/159982 = 7.1

Fit function

 $A_1 G_{\text{NS},W}(\Delta \eta) G_{\text{NS},W}(\Delta \phi)$ $+A_2G_{NSN}(\Delta \eta)G_{NSN}(\Delta \phi)$ $+A_3G_{\text{NS},D}(\Delta\eta)G_{\text{NS},D}(\Delta\phi)$ $+\frac{B}{2-|\Delta\eta|} \operatorname{erf}\left(\frac{2-|\Delta\eta|}{\sqrt{2}\sigma_{\Delta\eta+2}}\right)$ $\times G_{\rm AS}(\Delta \phi \pm \pi)$ $+DG_{\rm RG}(\Delta n)$ $+ C [1 + 2V_1 \cos(\Delta \phi)]$ $+2V_2\cos(2\Delta\phi)+2V_3\cos(3\Delta\phi)$

Large $\sigma_{\Delta\phi,{\rm AS}}$ turns $G_{{\rm AS}}$ into a flat line.

Awayside $\Delta \eta$ correlation

Suppose two particles (1, 2) correlated in η by momentum conservation or other nonflow effect. We let

$$\begin{cases} \Delta \eta = \eta_1 - \eta_2 \\ \delta = \eta_1 + \eta_2 \end{cases} \Rightarrow \begin{cases} \eta_1 = \frac{\delta + \Delta \eta}{2} \\ \eta_2 = \frac{\delta - \Delta \eta}{2} \end{cases}$$
(1)

where $\eta_1 = -\eta_2 + \delta$. For momentum conservation, the two particles tend to be back-to-back in η direction ($\eta_1 \sim -\eta_2$). δ serves as fluctuations, and the correlation could be a function of δ .

Since $|\eta_1| < 1$ and $|\eta_2| < 1$, the range of δ is

$$\begin{cases} \left| \frac{\delta + \Delta \eta}{2} \right| < 1 \\ \left| \frac{\delta - \Delta \eta}{2} \right| < 1 \end{cases} \Rightarrow |\delta| < 2 - |\Delta \eta| \tag{2}$$

Suppose the correlation function between two particles is $f(\eta_1,\eta_2)=g(\Delta\eta,\delta).$

$$f(\eta_1, \eta_2) d\eta_1 d\eta_2 = g(\Delta \eta, \delta) \frac{\partial(\eta_1, \eta_2)}{\partial(\Delta \eta, \delta)} d\Delta \eta d\delta$$

= $g(\Delta \eta, \delta) \begin{vmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{vmatrix} d\Delta \eta d\delta = \frac{1}{2} g(\Delta \eta, \delta) d\Delta \eta d\delta$ (3)

Integral over δ to get the marginal distribution of $\Delta\eta$

$$h(\Delta \eta) = \int_{-2+|\Delta \eta|}^{2-|\Delta \eta|} \frac{1}{2} g(\Delta \eta, \delta) \mathrm{d}\delta \tag{4}$$

If there is no correlation, then 2) $g(\Delta\eta, \delta) = f(\eta_1, \eta_2) = f(\eta_1)f(\eta_2) = \frac{1}{4}$, and the integral becomes $h(\Delta\eta) = \frac{1}{4}(2 - |\Delta\eta|)$, the acceptance triangle.

Awayside $\Delta \eta$ correlation

An intuitive assumption of the correlation from momentum conservation is δ obeys a Gaussian distribution centering at 0, which is $\delta \sim \mathcal{N}(0, \sigma)$.

$$g(\Delta\eta,\delta) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\delta^2}{2\sigma^2}\right)$$
(5)

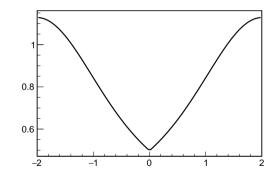
(may differ by a constant factor). And the marginal distribution becomes

$$h(\Delta \eta) = \frac{1}{2} \text{erf}\left(\frac{2 - |\Delta \eta|}{\sqrt{2}\sigma}\right)$$
(6)

After the acceptance correction, the function form should be

$$\frac{1}{2 - |\Delta\eta|} \operatorname{erf}\left(\frac{2 - |\Delta\eta|}{\sqrt{2}\sigma}\right) \tag{7}$$

If we set $\sigma=1,$ then the function looks like below, which seems similar to the STAR data shape at awayside (large $|\Delta\phi|).$



- \triangleright ϵ_3 estimate in a data-driven way in future?
- Background estimates for each centrality bin separately.
- ▶ Improve the $(\Delta \eta, \Delta \phi)$ 2D fittings.