Global Spin Alignment of φ-meson in 19.6 GeV Au+Au Collisions from STAR BES-II

Gavin Wilks for the STAR Collaboration

(gwilks3@uic.edu)

University of Illinois at Chicago

This work is supported in part by the DOE Office of Science

Outline

- Introduction to global spin alignment
- Results for K^{*0} and $\phi\text{-meson}~\rho_{00}$ from Au+Au BES-I at 11.5 200 GeV^1
- Motivation for this analysis
- Analysis method for global spin alignment (ρ_{00})
- Results for ϕ meson ρ_{00} (p_T) from 19.6 GeV BES-II Au+Au collisions
- Summary

Introduction to Spin Alignment

- In non-central heavy-ion collisions, large orbital angular momentum (OAM) is generated.
- OAM can preferentially align a particle's spin projection on the spin quantization axis.
 - Spin-orbit coupling.¹

STAR Collaboration, arXiv: 2204.02302 (2022).

STAR

Introduction to Spin Alignment

Preferential alignment of a particle's spin with respect to the large OAM produced in heavyion collisions.

 ρ_{00} : 00th element of the spin density matrix.

 θ^* : angle between K⁺ daughter and polarization axis in parent's rest frame.

 ρ_{00} is found by fitting the parent particle's yield (*N*) vs cos(θ^*).¹

$$\frac{dN}{d\cos\theta^*} = N_0 \times [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*]$$

 $\rho_{00} \neq 1/3$ indicates spin alignment.

STAR Collaboration, arXiv: 2204.02302 (2022).

STAR

[1] Schilling et al., Nucl. Phys.B18, 332 (1970).

ρ_{00} from BES-I

STAR Collaboration, arXiv: 2204.02302 (2022).

• For the first time, a large positive global spin alignment (ρ_{00} >1/3) for ϕ -meson was measured at mid-central collisions.

• $\rho_{00} \sim 1/3$ for K^{*0} at mid-central collisions.

Contributions to ϕ -meson ρ_{00} from Theory

1	at de	ilitar.
C	TR/	R
	200	
	ALC: NO AND	and a second

Physics Mechanism	ρ	00
Electric field ¹	< 1/3	~10-5
Electric part of vorticity tensor ¹	< 1/3	~10-4
Fragmentation of polarized quarks ²	≥ 1/3	~10-5
Magnetic components of EM and vorticity fields ^{1,2,3}	< 1/3	~10-5
Helicity polarization ⁴	< 1/3	
Locally fluctuating axial charge currents ⁵	< 1/3	
Local vorticity loop + coalescence ⁶	< 1/3	
Vector meson strong force field ^{1,7}	> 1/3	

- A large positive global spin alignment $(\rho_{00}>1/3)$ for ϕ -meson was measured at midcentral collisions from BES-I.
- Cannot be explained by conventional polarization mechanisms.
- Supported by a theoretical model considering a φ-meson strong force field.
 - Couples to s and \overline{s} quarks.

Sheng et al., Phys. Rev. D 101, 096005 (2020).
Liang et al., Phys. Lett. B 629, 20–26 (2005).
Yang et al., Phys. Rev. C 97, 034917 (2018).
Gao et al., Phys. Rev. D 104, 076016 (2021).
Müller et al., Phys. Rev. D 105, L011901 (2022).
Xia et al., Phys. Lett. B 817, 136325 (2021).
Sheng et al., Phys. Rev. D 102, 056013 (2020).

ϕ and $K^{*0}\left(\rho_{00}\right)$

Meson Species	ρ ₀₀	Constituent quarks	Mean Lifetime (fm/c)	Spin
φ	> 1/3	ss	45	1
K^{*0}	~ 1/3	$d\bar{s}$	4.1	1

- Mean lifetime of K^{*0} is ~10 times smaller than that of ϕ .
 - Different in medium interactions.
 - Different late stage of hadronic interactions.¹
- Fluctuating vector meson fields for d and \overline{s} are expected to be weaker than s and \overline{s} .
 - Leads to negligible contribution to ρ_{00} of $K^{\ast0}.$
- Electric component of vorticity tensor is larger for K^{*0}.
 - Negative contribution to $\rho_{00.2}^{2}$

Contributions to ϕ -meson ρ_{00} from Theory

[1] Sheng et al., Phys. Rev. D 101, 096005 (2020).[2] Sheng et al., Phys. Rev. D 102, 056013 (2020).

- A large positive global spin alignment $(\rho_{00}>1/3)$ for ϕ -meson was measured in mid-central collisions from BES-I.
- Supported by a theoretical model considering a φ-meson strong force field.^{1,2}
 - Couples to s and \overline{s} quarks.

$$C_s^{(y)} \equiv g_{\phi}^4 \langle \tilde{E}_{\phi,z}^2 + \tilde{E}_{\phi,x}^2 \rangle = 1109 \pm 143 \,\mathrm{fm}^{-8}$$

Corresponds to field strength:

$$g_{\phi} \sqrt{\left\langle E_{\phi,z}^2 + E_{\phi,x}^2 \right\rangle} \sim 2.5 m_{\pi}^2$$

$$\widetilde{E}_{\phi,z} = (m_{\phi}^2/g_{\phi})E_{\phi,z}$$
 $\widetilde{E}_{\phi,x} = (m_{\phi}^2/g_{\phi})E_{\phi,x}$

STAR

Motivation

$\sqrt{s_{NN}}$ (GeV)	BES-I (x10 ⁶ events)	BES-II (x10 ⁶ events)
19.6	36	478
14.6	18	324
11.5	12	235
9.2		162
7.7	4	101
7.7 (FXT)		163
7.2 (FXT)		561
6.2 (FXT)		118
5.2 (FXT)		103
4.5 (FXT)		108
3.9 (FXT)		170
3.5 (FXT)		116
3.2 (FXT)		201
3.0 (FXT)		2361

- Significantly increased statistics available from BES-II for identical energies.
 - Increased statistical precision.
- Many new collision energies available.
 - Clarify behavior of ρ_{00} for lower collision energies and higher baryon densities.
- Improvements to the STAR detector.
 - Increased acceptance in $|\eta|$.
 - Increased event plane resolution.
 - Tracking improvements.
- High precision differential measurements of K^{*0} and ϕ -meson $\rho_{00.}$
 - Could provide guidance for future theoretical developments.

The STAR Detector

Full azimuthal coverage TPC^{*} : $|\eta| < 1$ iTPC^{II*}: $|\eta| < 1.5$ tracking, centrality, particle identification, and event plane TOF^{*} : $|\eta| < 0.9$ eTOF^{II}: $1.1 < \eta < 1.5$ (not shown) particle identification BBC : $3.3 < |\eta| < 5$ (not shown) EPD^{II*}: $2.1 < |\eta| < 5.1$ event plane reconstruction $\sim 2x$ greater EP resolution with EPD

> *Used in this analysis II: Upgrades to STAR since BES-I 10

Gavin Wilks SQM2022, 06/14/2022

Analysis Method

Event mixing is used to produce ϕ -meson background.

Fit histogram with Breit Wigner + 1st order polynomial,

$$\frac{1}{2\pi} \frac{A\Gamma}{\left(m - m_{\phi}\right) + (\Gamma/2)^2} + B + Cm$$

Yields are extracted by histogram integration.

Analysis Method

For a given p_T bin, raw yields are extracted for seven $|\cos\theta^*|$ bins. Correct yields using efficiency calculated from STAR detector simulations.

[1] Tang et al., Phys. Rev. C 98, 044907 (2018).

[1] STAR Collaboration, arXiv: 2204.02302 (2022). [2] Sheng et al., arXiv:2205.15689 (2022).

Gavin Wilks SQM2022, 06/14/2022

 ϕ -meson ρ_{00} ($\sqrt{s_{NN}}$)

Mid-central Au+Au collisions (20-60%) **BES-II** Yield weighted average over $1.2 < p_T < 4.2$ GeV/c: $\rho_{00}^{\text{II}} = 0.3622 \pm 0.0026 \text{ (stat.)} \pm 0.0049 \text{ (sys.)}$ $\rho_{00}^{II} > 1/3$ with 5.3 σ **BES-I**¹ Yield weighted average over $1.2 < p_T < 4.2$ GeV/c: $\rho_{00}{}^{\rm I} = 0.370 \pm 0.008 \text{ (stat.)} \pm 0.007 \text{ (sys.)}$ $\rho_{00}^{I} > 1/3$ with 3.5 σ

 $\rho_{00}{}^{II}\sim\rho_{00}{}^{I}$ with 0.65σ

Gavin Wilks SQM2022, 06/14/2022

STAR

Summary

- $\phi: \rho_{00} > 1/3$ for mid-central collisions at energies ≤ 62 GeV BES-I.
 - Currently supported by vector meson strong force field.¹
 - More inputs needed from theory.
- Presented results for ρ_{00} from BES-II 19.6 GeV Au+Au.
 - $\rho_{00}^{II} > 1/3$ with 5.3 σ compared to $\rho_{00}^{II} > 1/3$ with 3.5 σ .²
 - Significant improvement in measurement precision.
 - Consistent with BES-I results.

Further work:

- Increase $|\eta|$ coverage available from STAR detector upgrades.
- More precise centrality dependent measurements of ρ_{00} .
- ρ_{00} of K^{*0} for 19.6 GeV.
- ρ_{00} for ϕ and K^{*0} from Au+Au BES-II at 7.7-14.6 GeV and FXT at 3.0-7.7 GeV.
- Additional precise differential studies of ρ_{00} (e.g., η dependence).

THANK YOU FOR YOUR ATTENTION

This work is supported in part by the DOE Office of Science

BACKUP

TPC 2nd Order Event Plane

TPC Event Plane Cuts

- $0.15 < p_T < 2 \text{ GeV/c}$
- |DCA| < 1 cm
- No. TPC hits > 15
- TPC hit ratio > 0.52
- $|\eta| < 1$

Sub-event plane method

• η gap = 0.1

Apply run-by-run, centrality and v_z wise re-centering and shift calibrations

 R_1 : EP resolution with 1st harmonic of EP and 2nd harmonic of flow.

 R_2 : EP resolution with 2nd harmonic of EP and 2nd harmonic of flow. 19

EP Resolution

• To ensure ρ_{00} with respect to the 2nd order EP is consistent with ρ_{00} with respect to the 1st order EP one must use the 2nd order EP "resolution" with respect to the reaction plane that the 1st order EP is perturbing around.

$$R_{21} = \langle \cos 2(\Psi_2 - \Psi_{r,1}) \rangle$$

• R_{21} can be found by using the following relation.

$$D_{12} \equiv \langle \cos 2(\Psi_1 - \Psi_2) \rangle$$

= $\langle \cos 2(\Psi_1 - \Psi_{r,1} + \Psi_{r,1} - \Psi_2) \rangle$
 $\approx \langle \cos 2(\Psi_1 - \Psi_{r,1}) \rangle \langle \cos 2(\Psi_{r,1} - \Psi_2) \rangle$
= $R_1 \cdot R_{21}$.

• Since we are using the 2nd order **sub-event** plane for our ρ_{00} calculations, we must use R_{21}^{Sub} instead.

$$R_{21}^{Sub} = R_{21}/\sqrt{2}$$

Tang et al., Phys. Rev. C 98, 044907 (2018).