Understanding mass hierarchy in different energy loss mechanisms through heavy flavor data

Bojana Ilic, Magdalena Djordjevic
Institute of Physics Belgrade
University of Belgrade
Mass hierarchy effect in energy loss mechanisms

- The experimental observations of R_{AA} mass hierarchy (i.e., dead cone) analyzed within radiative models

 PLB 519,199; PRD 85, 054012;
 PRD 69, 114003; NPA 733, 265; PRC 77, 024905; PLB 763, 439;
 PRL 93, 072301

- At intermediate-p_\perp range ($p_\perp \lesssim 10$ GeV) charm and bottom collisional – comparable to (or larger) than radiative energy loss

 NPA 784, 426; PRC 74, 064907; JPG 42, 075105; PLB 273, 128; PRC 72, 014905; APHA 22, 93

- The mass hierarchy in collisional energy loss is not yet addressed

- The upcoming RHIC and LHC measurements – employ high-p_T heavy flavor data for studying interaction mechanisms in QGP

M. Djordjevic, PLB 763, 439
Our goals

I. Utilizing complex R_{AA} patterns to differentiate between major energy loss mechanisms

II. Focusing on the region $p_T < 50$ GeV and addressing:

• Which observable could isolate collisional from radiative energy loss

• Analytical derivation of an explicit relation between collisional suppression/energy loss and heavy quark mass

• Analytical and numerical derivation of the mass ordering in collisional energy loss through this observable

M. Djordjevic, PLB 763, 439
Numerical framework: DREENA-C

• Full-fledged DREENA-C (Dynamical Radiative and Elastic ENergy loss Approach, C stands for constant/average temperature profile) framework:
 • Dynamical energy loss formalism:
 ✓ Complex, unique and realistic features
 ✓ Dominant ingredient for generating high-p_\perp suppression predictions
 • Constant (average) Temperature profile:
 ✓ Excludes complications from details of medium evolution
 ✓ Analytical derivations feasible
 ✓ Insignificant loss of accuracy in R_{AA} predictions (compared to DREENA-B (PLB 791, 236) and DREENA-A), low R_{AA} sensitivity to details of medium evolution

DREENA-C is an optimal framework for these studies (I and II), through R_{AA}, as it assumes sophisticated energy loss model.
The dynamical energy loss formalism

✓ Includes:
 • QCD medium of finite size and finite temperature
 • The medium consists of dynamical (i.e., moving) partons
 • Based on finite T field theory and generalized HTL approach
 M. Djordjevic, PRC 74, 064907; PRC 80, 064909; M. Djordjevic, U. Heinz, PRL 101, 022302
 • The same theoretical framework for both radiative and collisional energy loss
 • Applicable to both light and heavy flavor
 M. Djordjevic and M. Gyulassy, Nucl. Phys. A 733, 265
 • Finite magnetic mass effects
 M. Djordjevic and M. Djordjevic, PLB 709, 229
 • Running coupling
 M. Djordjevic and M. Djordjevic, PLB 734, 286
 • Relaxed soft-gluon approximation
 B. Blagojevic, M. Djordjevic, M. Djordjevic, PRC 99, 024901

All ingredients necessary for reliable high-\(p_T\) \(R_{AA}\) predictions!

B. Blagojevic and M. Djordjevic, JPG 42, 075105

M. Djordjevic, PLB 763, 439
Experimental validation of DREENA-C framework

In generating all predictions we used:

- The same numerical procedure (DREENA-C, D. Zigic, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, JPG 46, no.8, 085101)
- The same parameter set
- No fitting parameter

DREENA-C accurately addresses high-p_{\perp} parton-medium interactions and is adequate for these studies.

M. Djordjevic, PLB 763, 439

Explains high-p_{\perp} R_{AA} data for different probes, collision systems (experiments), energies and centralities!

Addresses heavy-flavor puzzle and has clear predictive power!
I. Nonintuitive suppression patterns (light or D probes)

With increasing p_T, $R_{AA} vs. N_{part}$:
- flatter
- difference between curves smaller

Saturation in $R_{AA} vs. N_{part}$.

Which energy loss mechanism is accountable for these observations?

Nonintuitive observations in agreement with our framework!

ATLAS: JHEP 09, 050; PRL 114, 072302

M. Djordjevic, PLB 763, 439
I. Nonintuitive suppression patterns (B probes)

$R_{AA} \text{ vs. } N_{part}$

pattern qualitatively different (compared to light probes)

Flatter $R_{AA} \text{ vs. } N_{part}$ across the p_T range

Slower $R_{AA} \text{ vs. } p_T$ change (compared to light probes)

Which energy loss mechanism is accountable for these observations?

Nonintuitive observation well reproduced within our framework!

M. Djordjevic, PLB 763, 439
Qualitative explanation of the observations (light or D probes)

Collisional contribution:
- significant at lower p_T (steep increase)

Radiative contribution:
- important at entire p_T range (slow increase)

R_{AA} vs. p_T pattern result of interplay of collisional and radiative contributions.

The lower p_T arrow spans a much larger R_{AA} range compared to the larger p_T arrows that are similar.

M. Djordjevic, PLB 763, 439
Qualitative explanation of the observations (B probes)

R_{AA} vs. p_T curves practically equidistant across the p_T range.

At lower p_T:
Both collisional and radiative contributions significant (notably smaller than for light/D probes)

At higher p_T:
Nearly flat radiative R_{AA} vs. p_T only important.

R_{AA} vs. p_T pattern consequence of mass hierarchy in collisional and radiative energy losses

M. Djordjevic, PLB 763, 439
II. Mass hierarchy in energy loss mechanisms

The dead-cone effect, i.e., the mass hierarchy in radiative energy loss.

Importantly: Obtained clear mass hierarchy in collisional energy loss also!

Which observable could quantify this effect?

Proposition:
\[f(1 - R_{AA}) \]
as being particularly sensitive to parton energy loss solely.

Unexpectedly:
For all centralities TOT and COLL ratios nearly overlapping!

Collisional contribution in the origin of heavy flavor $1 - R_{AA}$

$1 - R_{AA}$ ratio might disclose mass hierarchy in collisional energy loss.

Search for an observable

Analytical derivation: Which information does the new observable carry?

Convolution of initial parton p_T distribution and collisional energy loss:

$$\frac{d\sigma_i^f}{dp_T^2} = \int d\varepsilon D(\varepsilon) \frac{d\sigma_i^i(p_T^2 + \varepsilon)}{dp_T^2} = \int d\varepsilon D(\varepsilon) \frac{d\sigma_i^i(p_T^2)}{dp_T^2} + \int d\varepsilon D(\varepsilon) \varepsilon \frac{d}{dp_T} \left(\frac{d\sigma_i^i(p_T^2)}{dp_T^2} \right) + ...$$

$$\approx \frac{d\sigma_i^i}{dp_T^2} + \Delta E_{\text{coll}} \frac{d}{dp_T} \left(\frac{d\sigma_i^i}{dp_T^2} \right)$$

Initial distribution parameterization:

$$\frac{d\sigma_i^i}{dp_T^2} = \frac{C}{(p_T^2 + M^2)^k}$$

Initial distribution parameterization:

- Convolution of initial parton p_T distribution and collisional energy loss:

 $$\frac{d\sigma_i^f}{dp_T^2} = \int d\varepsilon D(\varepsilon) \frac{d\sigma_i^i(p_T^2 + \varepsilon)}{dp_T^2} = \int d\varepsilon D(\varepsilon) \frac{d\sigma_i^i(p_T^2)}{dp_T^2} + \int d\varepsilon D(\varepsilon) \varepsilon \frac{d}{dp_T} \left(\frac{d\sigma_i^i(p_T^2)}{dp_T^2} \right) + ...$$

 $$\approx \frac{d\sigma_i^i}{dp_T^2} + \Delta E_{\text{coll}} \frac{d}{dp_T} \left(\frac{d\sigma_i^i}{dp_T^2} \right)$$

- Initial distribution parameterization:

 $$\frac{d\sigma_i^i}{dp_T^2} = \frac{C}{(p_T^2 + M^2)^k}$$

The same C and k for bottom and charm.

Initial distribution parameterization:

- Convolution of initial parton p_T distribution and collisional energy loss:

 $$\frac{d\sigma_i^f}{dp_T^2} = \int d\varepsilon D(\varepsilon) \frac{d\sigma_i^i(p_T^2 + \varepsilon)}{dp_T^2} = \int d\varepsilon D(\varepsilon) \frac{d\sigma_i^i(p_T^2)}{dp_T^2} + \int d\varepsilon D(\varepsilon) \varepsilon \frac{d}{dp_T} \left(\frac{d\sigma_i^i(p_T^2)}{dp_T^2} \right) + ...$$

 $$\approx \frac{d\sigma_i^i}{dp_T^2} + \Delta E_{\text{coll}} \frac{d}{dp_T} \left(\frac{d\sigma_i^i}{dp_T^2} \right)$$

- Initial distribution parameterization:

 $$\frac{d\sigma_i^i}{dp_T^2} = \frac{C}{(p_T^2 + M^2)^k}$$

The same C and k for bottom and charm.
Analytical derivation: Which information does the new observable carry?

Suppression:

\[
R_{AA} = \frac{d\sigma^i}{dp_T^2} / \frac{d\sigma^f}{dp_T^2}
\]

\[
1 - R_{AA} \approx 2k \frac{p_T}{E} \frac{\Delta E_{coll}}{E}
\]

Collisional energy loss:

\[
\frac{\Delta E_{coll}}{E} \sim \frac{1}{E v^2} \left(v + \frac{v^2}{2} - \ln \left(\frac{1+v}{1-v}\right)\right)
\]

\[v = \frac{p_T}{\sqrt{p_T^2 + M^2}}\]

Mass dependence of collisional energy loss:

\[
\frac{\Delta E_{coll}}{E} \sim \frac{1}{p_T} \left(1 - \frac{M^2}{p_T^2} \ln(2) + \left(\frac{M}{p_T}\right)^{\frac{M}{p_T}+1} - \frac{M}{p_T}\right)
\]

Mass dependence of \(1 - R_{AA}\) ratio:

\[
1 - R_{AA} \sim \frac{2k}{p_T} \left(1 - \frac{M^2}{p_T^2} \left(\ln 2 + \frac{1}{2}\right) + \left(\frac{M}{p_T}\right)^{\frac{M}{p_T}+1} - \frac{M}{p_T}\right)
\]

Carries information about mass hierarchy in collisional energy loss!

New observable

Dominant terms

Carries information about mass hierarchy in collisional energy loss!
The new observable \(\frac{1 - R_{AA}^b}{1 - R_{AA}^c} \)

Unexpectedly simple relation:

\[
1 - R_{AA}^b \approx \frac{1}{p_T} \left(1 - \frac{M_b}{p_T} \right)
\]

\[
1 - R_{AA}^c \approx \frac{1}{p_T} \left(1 - \frac{M_c}{p_T} \right)
\]

It is independent of:

- The collision centrality
- The collision system (size)
- The collision energy

The new observable - applicable to both the RHIC and the LHC experiments.

Testing the adequacy of new observable \(\frac{1-R_{AA}^b}{1-R_{AA}^c} \)

A good agreement between:

Data and our predictions (qualitatively and quantitatively)

DREENA-C predictions and our analytical estimate \(\left(1 - \frac{M_b}{p_T}\right)/\left(1 - \frac{M_c}{p_T}\right) \) (for all centralities).

Data and our analytical mass estimate.

Confirms adequacy of DREENA-C.

Implies validity of our analysis.

Supports adequacy of proposed observable.

Summary

I. Unexpected and significantly different suppression patterns for different flavors - for differentiating between radiative and collisional contributions

II. Focused on $p_T < 50$ GeV region we:
 • Proposed an observable to unravel collisional from radiative energy loss
 • Derived an explicit relation between collisional suppression/energy loss and heavy quark mass
 • Verified the adequacy of the proposed observable against the data
 • Observable robust to collision centrality, system and energy

Outlook: Specific guidelines for future experimental efforts

I. Single particles measurements at higher p_T
II. Lower p_T, and higher precision measurements → accessible at both RHIC and LHC
II. B meson suppression data would be beneficial
II. B meson (non-prompt J/Ψ, D0) and D meson suppression data should be provided for the same centrality bins
Thank you for your attention!
Backup
DREENA-C: Numerical framework

• Heavy flavor production
 Z.B. Kang, I. Vitev, H. Xing, PLB 718, 482; R. Sharma, I. Vitev, and B. W. Zhang, PRC 80, 054902

• Dynamical energy loss in a finite size QCD medium
 M. Djordjevic and M. Djordjevic, PLB 734, 286

• Multi-gluon fluctuations
 M. Gyulassy, P. Levai, I. Vitev, PLB 538, 282
 S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy, NPA 784, 426

• Path-length fluctuations
 A. Dainese, EPJ C33, 495; S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, NPA 784, 426; D. Zigic, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, JPG 46, 085101
For each centrality region.

\(T^3 \sim \frac{dN_g}{dy} \frac{1}{V} \rightarrow T = c \left(\frac{dN_g}{dy} \right)^{1/3} \)

\(V \sim N_{\text{part}} \quad \frac{dN_g}{dy} \frac{1}{N_{\text{part}}} \sim \frac{dN_{ch}}{dy} \frac{1}{N_{\text{part}}/2} \)

M. Gyulassy, P. Levai and I. Vitev, NPB 594 371
M. Djordjevic, M. Djordjevic and B. Blagojevic, PLB 737, 298
D and B mesons (non-prompt J/Ψ....) present genuine charm and bottom probe’s suppression.
