Higher-order event-by-event mean- p_{T} fluctuations in pp and A-A collisions with ALICE

Swati Saha*

On behalf of the ALICE Collaboration
*National Institute of Science Education and Research (HBNI), Bhubaneswar, India

Motivation

Event-by-event mean transverse momentum ($\left\langle p_{\mathrm{T}}\right\rangle$) fluctuations:
\rightarrow related to correlations in particle production
\rightarrow provide evidence for the production of QGP
Henning Heiselberg, Physics Reports 351 (2001) 161-194
previous measurement of event-by-event $\left\langle p_{\mathrm{T}}\right\rangle$ fluctuation up to second order only

Skewness of the $\left\langle p_{\mathrm{T}}\right\rangle$ fluctuations can probe hydrodynamic behaviour in A-A collisions
\rightarrow Hydrodynamics predicts positive skewness

- attributes its origin to the fluctuations of energy of the fluid when hydrodynamic expansion starts
\rightarrow sensitive to the early thermodynamics of the QGP
\rightarrow direct way to observe initial-state fluctuations
\rightarrow measurements will strongly constrain the modeling of the initial stages in hydrodynamic studies
G. Giacalone et al., Phys. Rev. C 103, 024910 (2021)

Second order event-by-event $\left\langle p_{\mathrm{T}}\right\rangle$ fluctuation relative to $\left\langle p_{\mathrm{T}}\right\rangle$ as a func. of $\left\langle\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta\right\rangle$

What is the skewness of $\left\langle p_{\mathrm{T}}\right\rangle$ distribution in A-A, what about pp ?

Observables

$\left\langle p_{\mathrm{T}}\right\rangle$ correlators: extract dynamical information of $\left\langle p_{\mathrm{T}}\right\rangle$ fluctuation
$\rightarrow\left\langle\Delta p_{i} \Delta p_{j}\right\rangle=\left\langle\frac{\sum_{i, j, i \neq j}^{N_{\mathrm{ch}}}\left(p_{i}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle\right)\left(p_{j}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle\right)}{N_{\mathrm{ch}}\left(N_{\mathrm{ch}}-1\right)}\right\rangle_{\mathrm{ev}} \sim \boldsymbol{\mu}_{\mathbf{2}}$

$\left\langle p_{\mathrm{T}}\right\rangle$ fluctuation

$\rightarrow\left\langle\Delta p_{i} \Delta p_{j} \Delta p_{k}\right\rangle=\left\langle\frac{\sum_{i, j, k, i \neq j \neq k}^{N}\left(p_{i}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle\right)\left(p_{j}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle\right)\left(p_{k}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right)\right.}{N_{\mathrm{ch}}\left(N_{\mathrm{ch}}-1\right)\left(N_{\mathrm{ch}}-2\right)}\right\rangle_{\mathrm{ev}} \sim \mu_{3}$
$\rightarrow\left\langle\Delta p_{i} \Delta p_{j} \Delta p_{k} \Delta p_{l}\right\rangle=\left\langle\frac{\sum_{i, j, k, l, i \neq j \neq k \neq l}\left(p_{i}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle\right)\left(p_{j}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle\right)\left(p_{k}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle\right)\left(p_{l}-\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right)\right\rangle}{N_{\mathrm{ch}}\left(N_{\mathrm{ch}}-1\right)\left(N_{\mathrm{ch}}-2\right)\left(N_{\mathrm{ch}}-3\right)}\right\rangle_{\mathrm{ev}} \sim \mu_{4}$
where, μ_{n} is the $\mathrm{n}^{\text {th }}$ order moment of $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$

$$
\begin{aligned}
& \begin{array}{l}
\text { Intensive } \\
\text { skewness }
\end{array} \sim \text { independent of } \boldsymbol{N}_{\mathrm{ch}}
\end{aligned} \begin{gathered}
\begin{array}{c}
\text { Dynamic } \\
\text { kurtosis }
\end{array} \sim \mathbf{1} / \boldsymbol{N}_{\mathrm{ch}} \\
\Gamma_{\left\langle p_{\mathrm{T}}\right\rangle}=\frac{\left\langle\Delta p_{i} \Delta p_{j} \Delta p_{k}\right\rangle\left\langle\left\langle p_{\mathrm{T}}\right\rangle\right\rangle}{\left\langle\Delta p_{i} \Delta p_{j}\right\rangle^{2}} \quad \kappa_{\left\langle p_{\mathrm{T}}\right\rangle}=\frac{\left\langle\Delta p_{i} \Delta p_{j} \Delta p_{k} \Delta p_{l}\right\rangle}{\left\langle\Delta p_{i} \Delta p_{j}\right\rangle^{2}}
\end{gathered}
$$

[^0]

Results: Skewness and kurtosis of $\left\langle p_{\mathrm{T}}\right\rangle$

ALICE

\rightarrow positive skewness excess from its baseline value observed in A-A collisions
\rightarrow indicates hydrodynamic evolution in A-A system
\rightarrow pp collisions and models without hydrodynamics also show excess of the intensive skewness over corresponding baselines
\rightarrow comparable to hydrodynamic model predictions

Dynamic kurtosis

\rightarrow mild dependence on multiplicity in A-A collisions
\rightarrow approaches Gaussian baseline at high multiplicity in A-A collisions
\rightarrow pp collisions remain consistently above the Gaussian baseline indicating that it is a more correlated system
\rightarrow HIJING qualitatively describes data but shows no quantitative agreement

Skewness of $\left\langle p_{\mathrm{T}}\right\rangle$ - is it trivial?

$\left\langle p_{\mathrm{T}}\right\rangle=\frac{\sum_{i=1}^{N_{\mathrm{ch}}} p_{i}}{N_{\mathrm{ch}}} \square$
Does the fluctuations of e-by-e $\left\langle p_{\mathrm{T}}\right\rangle$ arise from trivial stochastic effects of multiplicity (N_{ch})?

ALI-PREL-503530
\rightarrow Black points: Distributions obtained by fixing N_{ch} to $N_{\mathrm{ch}}{ }^{\min }{ }^{(*)}$) in a given centrality class, to disentangle statistical fluctuations of N_{ch}. Black and red dashed lines indicate Gaussian fit. * $N_{\mathrm{ch}}{ }^{\text {min }}$ is the minimum number of charged particle per event for a centrality class
$\left\langle p_{\mathrm{T}}\right\rangle$ distribution continues to have a positive skew even after removing the stochastic effect of N_{ch}, which shows that the skewness is not a trivial consequence of e-b-e N_{ch} fluctuations

Summary :

\rightarrow First measurement of skewness and kurtosis of $\left\langle p_{\mathrm{T}}\right\rangle$ in $\mathrm{pp}, \mathrm{Pb}-\mathrm{Pb}$ and Xe-Xe collisions at LHC energies.
\rightarrow Positive intensive skewness in A-A collisions shows significant excess from its independent baseline - existence of hydrodynamic evolution in the system.
\rightarrow Measurements in pp collisions and HIJING simulations also show excess of intensive skewness over their corresponding baselines.
\rightarrow Measurement of the dynamic kurtosis may help distinguish particle production mechanisms in different systems.

THANK YOU

[^0]: G. Giacalone et al., Phys. Rev. C 103, 024910 (2021)

