PointNet for fast event characterisation in heavy-ion collision experiments

Manjunath Omana Kuttan, Jan Steinheimer, Kai Zhou, Andreas Redelbach, Horst Stoecker

PointNet: Deep Learning for point clouds

- **Experimental data has inherent point cloud structure**
 - pointclouds: collection of points in space
 - $x_1 \ y_1 \ z_1$
 - $x_2 \ y_2 \ z_2$
 - $\vdots \ \vdots \ \vdots$
 - $x_n \ y_n \ z_n$

- Point clouds are represented as 2D array.
 - each row = a point in the point cloud
 - each column = a dimension of the point cloud

- PointNet based models learn directly from point clouds.
 - respects the order invariance of point clouds
 - direct processing of experimental data

- Advantages:
 - less processing time ⇒ ideal online algorithm
 - optimal for higher dimensional data

- We consider the CBM experiment as a use case
 - Au-Au collisions
 - 10 AGeV

PointNet based centrality meter

- Trained on simulated hits/tracks to **reconstruct impact parameter b**

![Image](image1.png)

Fig 3. The mean error in b-predictions for different DL models and Polyfit baseline.

PointNet based Equation of State meter

- Trained on simulated tracks to **classify phase transition events from crossover**

![Image](image2.png)

Fig 4. Classification accuracy for PointNet models with different experimental effects.
The PointNet architecture

- Point cloud: set of data points in space
 - No ordering
 - \{(x_1, y_1, z_1), (x_2, y_2, z_2), ... (x_n, y_n, z_n)\}

- Electronically collected data often has point cloud structure
 - Data from sensors, detectors etc.

DL models operating on Point clouds

1. Works on free-streaming experimental data
2. Minimal preprocessing
3. No loss of information from histogram binning
4. Online physics analyses

Major components of PointNet:
- 1D Conv to extract per point features
- **symmetric operations** to convert per point feature maps to global event features

A point cloud is given by set of points “X”:

\[X = \{x_1, x_2, x_3, ... x_n\} \]

PointNet learns a set of functions “F”:

\[F = \{f_1, f_2, ..., f_m\} \text{, where } f_i((x_1, ..., x_n)) \approx g(h_i(x_1), ..., h_i(x_n)), \]

\[h = \text{1D CNN, } g = \text{AvgPooling} \]
Impact parameter reconstruction with PointNet

- Impact parameter ‘b’: not experimentally measurable
 - Glauber MC
 - Only a ‘likely’ distribution for b in a centrality bin is known

Our solution: PointNet based ‘b’ meter
- Event-by event
- Works on direct experimental output
- Online event characterisation

- DL models outperform conventional methods
- excellent resolution and accuracy across b=2-14 fm
- provides event-by-event b directly from experimental readout
- fast enough to be usable in online event selection
 - ~ 1000 events/s on one GPU

Particles 4.1 (2021): 47-52

Polyfit (non-ML baseline)

- Hits in MVD
- hits in STS
- tracks in MVD+ STS
- MVD hits + tracks from MVD+STS
- polynomial fit to N_{ch} vs. b
EoS classification with PointNet

- Essential input to fluid dynamics evolution
 - pressure of the medium for any given energy and net baryon number densities

- Incorporates the QCD transition
 - Pressure gradients drives the evolution

- Not directly accessible experimentally

Our solution: **PointNet EoS classifier**

- We use:
 - **First Order Phase transition**: Maxwell construction between a bag model quark gluon EoS and a gas of pions and nucleons
 - **Crossover**: Chiral Mean Field hadron-quark EoS

UrQMD output

- 4-momentum of all particles
- Ideal detector

UrQMD output with CBM acceptance

- 4-momentum of all particles
- 2-25° acceptance cut

UrQMD + CbmRoot

- Reconstructed tracks from digitised STS hits
- Realistic simulation

- accuracy on e-b-e data:
 - ideal case (01): 77.2%
 - realistic case (03): 62.4%

- accuracy improves for multi-event point clouds

- with 40 events: **97% accuracy** for case 03

- work over a wide range of centralities

- outperform conventional methods (e.g. v2)