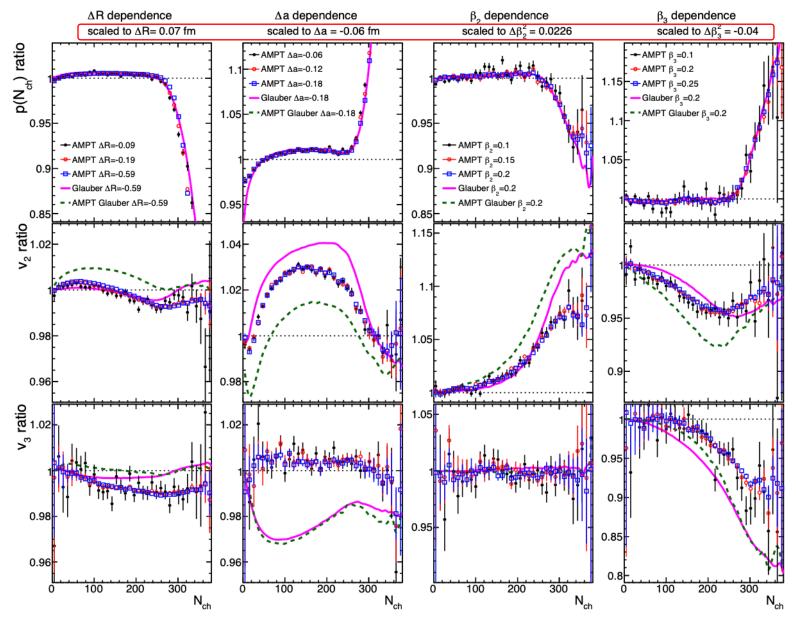


sQuark Matter 2022

Scaling approach to nuclear structure on initial and final state



Species	β_2	β_3	a_0	R_0
Ru	0.162	0	$0.46~{ m fm}$	$5.09~{\rm fm}$
Zr	0.06	0.20	$0.52~{ m fm}$	$5.02~{ m fm}$
difference	Δeta_2^2	$\Delta \beta_3^2$	Δa_0	ΔR_0
	0.0226	-0.04	-0.06 fm	$0.07~{\rm fm}$

nearly perfect scaling over the wide range of parameter values

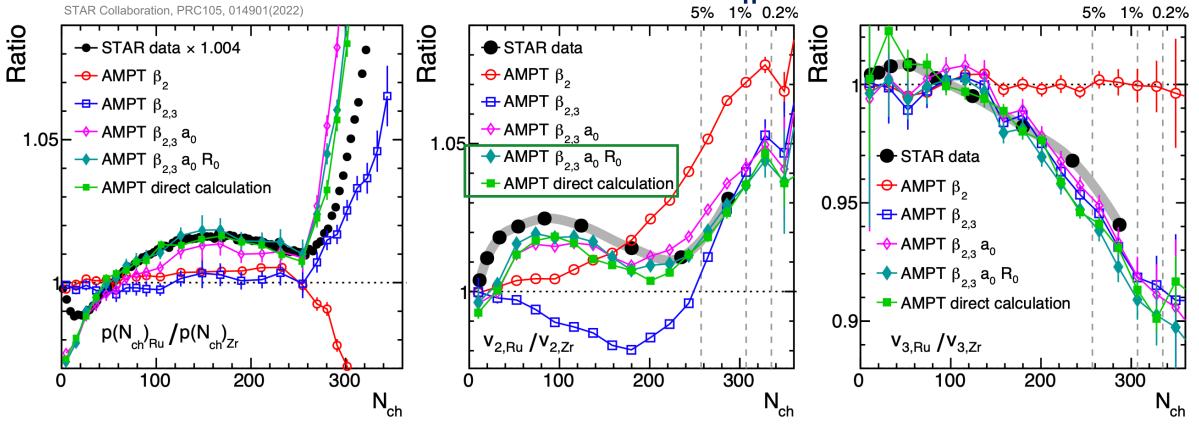
c_n can be determined more precisely by using a larger change of these parameters

Verifies the relation:

$${\cal O}pprox b_0 + b_1eta_2^2 + b_2eta_3^2 + b_3(R_0-R_{0,\,{
m ref}}) + b_4(a-a_{
m ref})$$

$$R_{\mathcal{O}} \equiv rac{\mathcal{O}_{ ext{Ru}}}{\mathcal{O}_{ ext{Zr}}} pprox 1 + c_1 \Delta eta_2^2 + c_2 \Delta eta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Nuclear structure via v_n ratio



Heavy-ion expectation:

$$v_2^2 = a_2 + b_2 \beta_2^2 + b_{2,3} \beta_3^2, \quad v_3^2 = a_3 + b_3 \beta_3^2$$

 $\frac{v_{2,Ru}^2}{v_{2,Zr}^2} \approx 1 + \frac{b_2}{a_2} \left(\beta_{2,Ru}^2 - \beta_{2,Zr}^2\right) - \frac{b_{2,3}}{a_2} \beta_{3,Zr}^2$
 $\frac{v_{3,Ru}^2}{v_{3,Zr}^2} \approx 1 - \frac{b_3}{a_3} \beta_{3,Zr}^2 < 1$ Cancelation expected in non-central collisions

1) v₂ ratio: large $\beta_{2,Ru}$, negative contribution from $\beta_{3,Zr} \Rightarrow$ Sharper increase in central 2) v₃ ratio: strong decrease from $\beta_{3,Zr}$ with negligible $\beta_{2,Ru}$ distortion

3) Residual effect due to radial structure, e.g., neutron skin in Zr

4) No significant effect due to nuclear size

✓ Direct calculations are same as initial whole β_2 , β_3 , a_2 , R_0 input.

C. Zhang and J. Jia, PRL128, 022301 (2022)

sQuark Matter 2022

3/5

A direct algebra linked to neutron skin

Using relation for WS: $R^2 \equiv \langle r^2 \rangle \approx \left(\frac{3}{5} R_0^2 + \frac{7}{5} \pi^2 a^2 \right) / \left(1 + \frac{5}{4\pi^2} \sum_n \beta_n^2 \right)$

Neutron skin expressed by R and a parameters for nucleons and protons:

$$\Delta r_{np} pprox rac{R^2 - R_p^2}{R(\delta + 1)} pprox rac{3 \Big(R_0^2 - R_{0,p}^2 \Big) + 7 \pi^2 ig(a^2 - a_p^2 ig)}{\sqrt{15} R_0 \sqrt{1 + rac{7 \pi^2}{3} rac{a^2}{R_0^2}} \Big(1 + \delta + rac{5}{8 \pi^2} \sum_n eta_n^2 \Big)} \qquad \delta = (N - Z) / A$$

The difference between two isobar systems can be expressed as:

$$\Delta(\Delta r_{np}) = \Delta r_{np,1} - \Delta r_{np,2} pprox rac{\Delta Y - rac{7\pi^2}{3} rac{ar{a}^2}{R_0^2} \left(rac{\Delta Y}{2} + ar{Y} \left(rac{\Delta a}{ar{a}} - rac{\Delta R_0}{ar{R}_0}
ight)
ight)}{\sqrt{15} ar{R}_0 \Big(1 + ar{\delta} + rac{5}{8\pi^2} \sum_n ar{eta}_n^2 \Big)}$$

where $Y \equiv 3 \left(R_0^2 - R_{0,p}^2 \right) + 7 \pi^2 \left(a^2 - a_p^2 \right)$ $\Delta x = x_1 - x_2$ $\bar{x} = (x_1 + x_2)/2$

Can obtain skin diff. from $\Delta R_0 \Delta a$ for nucleons and known $\Delta R_0 \Delta a$ for protons

Table from	H. Xu et al., PLB819, 1136453(2021)
------------	-------------------------------------

	96	⁹⁶ Ru		⁹⁶ Zr	
	R	а	R	а	
р	5.060	0.493	4.915	0.521	
n	5.075	0.505	5.015	0.574	
p+n	5.067	0.500	4.965	0.556	

Direct calc.: $\Delta(\Delta r_{np})$ =0.0296 fm - 0.1606 fm = -0.1310 fm

Formula: $\Delta(\Delta r_{np})$ = -0.1319 fm

<1% difference

sQuark Matter 2022

Conclusions and Outlooks

- 1) Demonstration: the nuclear structure effect on bulk observables.
- 2) AMPT could describe the STAR published data quantitatively.

3) A new approach to constrain the collective nuclear structure parameters:

The final state bulk observables v_{2} , v_{3} and $p(N_{ch})$ follow a simple dependences on the variation of parameters: \checkmark

$$R_{\mathcal{O}}\equiv rac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}}pprox 1+c_1\Deltaeta_2^2+c_2\Deltaeta_3^2+c_3\Delta R_0+c_4\Delta a_1,$$

The c_n can be determined precisely in a given model. \checkmark

 \mathcal{O}

The data-model comparison can precisely constrain the dependence of nuclear parameters: \checkmark

 $\Deltaeta_2^2=eta_{2.\mathrm{Ru}}^2-eta_{2.\mathrm{Zr}}^2\qquad\qquad\Deltaeta_3^2=eta_{3.\mathrm{Ru}}^2-eta_{3.\mathrm{Zr}}^2\qquad\qquad\Delta R_0=R_{0,\mathrm{Ru}}-R_{0,\mathrm{Zr}}\qquad\qquad\Delta a=a_{\mathrm{Ru}}-a_{\mathrm{Zr}}$

Achieve to obtain the difference of neutron skin between two isobar systems: \checkmark

$$\Delta(\Delta r_{np}) = \Delta r_{np,1} - \Delta r_{np,2} pprox rac{\Delta Y - rac{7\pi^2}{3} rac{ar{a}^2}{R_0^2} \left(rac{\Delta Y}{2} + ar{Y} \left(rac{\Delta a}{ar{a}} - rac{\Delta R_0}{ar{R}_0}
ight)
ight)}{\sqrt{15} ar{R}_0 \left(1 + ar{\delta} + rac{5}{8\pi^2} \sum_n ar{eta}_n^2
ight)}$$

4) Unique opportunities by relativistic collisions of isobars as a tool to study nuclear structure.

