Measurements of quarkonia production in jets at LHCb

Naomi Cooke on behalf of the LHCb collaboration

University of Birmingham
Strangeness in Quark Matter 2022

June 9, 2022
- **Hard production** Non-Relativistic QCD (NRQCD) predicts:
 - Differential production cross section consistent with measurement.
 - J/ψ produced largely isolated.
 - Large transverse polarisation, minimal observed.

![Graph showing differential production cross section](image)

- Colour singlet
 - Low \(p_T \)
 - Longitudinal pol.

- Colour octet
 - High \(p_T \)
 - Transverse pol.

Naomi Cooke

Measurements of quarkonia production in jets at LHCb

June 9, 2022
Shower production analytic resummation NRQCD predicts:
- Lack of polarisation
- J/ψ rarely produced in isolation

Two pictures of quarkonia production distinguished by studying radiation associated with them → JETS

Instead of measuring cross section wrt $p_T(J/\psi)$, take into account surrounding radiation with $z \equiv p_T(J/\psi)/p_T(\text{jet})$.

Procedure:
- Build Quarkonia $(Q) \rightarrow \mu^+\mu^-$ candidates in jets
- Determine Q signal yield with mass fits
Separate prompt (direct) from displaced (eg. b decays) yields with pseudo-lifetime fits, \[t \equiv x_z - x_z(PV)m_Q/p_z \]

Measure \(d\sigma/\sigma \) verses \(z \equiv p_T(Q)/p_T(jet) \), to probe DPS.

Obtain different \(z \) distributions for different \(Q \) with unfolding and efficiency corrections: \(J/\psi, \psi(2S), \Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \) and \(X(3872) \).
Unfolding p_T(jet) from reconstruction to truth level is done to correct for jet energy resolution effects, using RooUnfold.
• Presented here results for $z(J/\psi)$.
• Analyses for $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ and $X(3872)$ are in progress.
• Predictions for the $z(Q)$ distributions are shown below, where Υ’s are predicted to be more isolated than $\psi(2S)$ and $X(3872)$.