Accessing Saturation and Sub-Nuclear Structure with Multiplicity Dependent J/ψ production in p+p and p+Pb Collisions **SQN2622**

Farid Salazar UCLA, UC Berkeley & Lawrence Berkeley Lab

UCLA

Based on: F. Salazar, B. Schenke, and A. Soto-Ontoso. Phys.Lett.B 827 (2022) 136952, ArXiv: 2112.04611

Scanning Saturation with J/ψ and charged hadron

Study production of J/ψ at forward and backward rapidities relative to charged hadrons at mid-rapidity

Expect varying sensitivity to saturation, depending on probed Q_s and mass:

> $J/\psi m_{J/\psi} = 3.1 \,\text{GeV}$ $Q_{s}^{p} = 2.8$ $Q_{\rm s}^{\rm Pb} = 1.2$

 $h m_{h_c} \approx 0.5 \,\mathrm{GeV}$

Spatial dependence in $T_A(\mathbf{R}_+)$ includes fluctuations of nucleon positions and nucleon substructure: 3 hot spots locations per nucleon sampled from $2\pi B_{\rm qc}$

Theory: charged hadron and J/ψ production

• k_T -factorization for gluon production

$$\frac{\mathrm{d}N_g(\boldsymbol{b}_{\perp})}{\mathrm{d}^2\boldsymbol{p}_{g\perp}\mathrm{d}y_g} = \frac{\alpha_s}{(\sqrt{2}\pi)^6 C_F} \frac{1}{\boldsymbol{p}_{g\perp}^2} \int_{\boldsymbol{k}_{1\perp},\boldsymbol{R}_{\perp}} \phi^p(x_p; \boldsymbol{k}_{1\perp}; \boldsymbol{R}_{\perp}) \\ \phi^A(x_A; \boldsymbol{p}_{g\perp} - \boldsymbol{k}_{1\perp}; \boldsymbol{R}_{\perp} - \boldsymbol{b}_{\perp})$$

- Unintegrated gluon distributions ϕ^p and ϕ^A from BK evolution with MV initial conditions + spatial dependence
- Hadronize using KKP fragmentation function

• $c\bar{c}$ -pair production in NRQCD for quantum state κ

$$\frac{\mathrm{d}N_{c\bar{c}}^{\kappa}(\boldsymbol{b}_{\perp})}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}\mathrm{d}Y} = \frac{\alpha_{s}}{(2\pi)^{9}2N_{c}C_{F}} \int_{\boldsymbol{k}_{1\perp},\boldsymbol{k}_{\perp},\boldsymbol{k}_{\perp},\boldsymbol{k}_{\perp},\boldsymbol{k}_{\perp},\boldsymbol{k}_{\perp}}^{\kappa} (\boldsymbol{P}_{\perp}-\boldsymbol{k}_{1\perp},\boldsymbol{k}_{\perp},\boldsymbol{k}_{\perp},\boldsymbol{k}_{\perp}') \frac{\phi^{p}(x_{p},\boldsymbol{k}_{1\perp},\boldsymbol{k}_{\perp},\boldsymbol{k}$$

• \mathscr{H}^{κ} are the hard factors, and the $\tilde{\Xi}^{\kappa}$ contain dipole amplitudes (related to ϕ^A)

$$\frac{\mathrm{d}N_{J/\psi}(\boldsymbol{b}_{\perp})}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}\mathrm{d}Y} = \sum_{\kappa} \frac{\mathrm{d}N_{c\bar{c}}^{\kappa}(\boldsymbol{b}_{\perp})}{\mathrm{d}^{2}\boldsymbol{P}_{\perp}\mathrm{d}Y} \langle \mathcal{O}_{\kappa}^{J/\psi} \rangle$$

with non-perturbative long-distance matrix elements $\langle \mathcal{O}_{\kappa}^{J/\psi} \rangle$

Results: Fluctuations

Charged hadron multiplicity distribution

Experimental data: CMS Collaboration, Phys.Lett. B718, 795 (2013), https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsHIN12015

Parameter	Value	Parameter	Value
N_q	3	α_s	0.16
B_{qc}	$\left 3 \mathrm{GeV}^{-2} \right $	$m_{ m IR}$	$0.2{ m GeV}$
B_q	$\left 1 \mathrm{GeV}^{-2} \right $	$m_{J/\psi}$	$3.1{ m GeV}$
σ_{B_q}	0.7	m_c	$m_{J/\psi}/2$
$\sigma_{Q^2_s}$	0.1	m_D	$1.87\mathrm{GeV}$
$ S_{\perp}$	$ 13\mathrm{mb} $		

 σ_{B_q} and σ_{Q_s} : width parameters in log-normal fluctuations ξ $m_{\rm IR}$: infrared regulator in the charged hadron calculation

Results: J/ψ vs charged hadron yield

Rapidity	p/Pb	Q_s [GeV]
midrapidity	р	1.35
indiapidity	Pb	2.41
n-going	р	0.78
p-going	Pb	4.18
Ph-going	р	2.78
10-going	Pb	1.18

Experimental data: S. Acharya et al. (ALICE), JHEP 09, 162 (2020), arXiv:2004.12673 [nucl-ex].

Results: fluctuations affect saturation and mean p_T

• More normalization fluctuations (less size fluctuations) lead to stronger saturation effects on the J/ψ in the Pb-going direction

Pb-going	p Pb	$\frac{2.78}{1.18}$		
$dN_{\rm ch}/d\eta = 4\langle dN_{\rm ch}/d\eta \rangle$				

- Mean p_T driven by mass and Q_s
- Q_{c} fluctuations and hot spot size matter

Experimental data: ALICE Collaboration, JHEP 09, 162 (2020)