ANISOTROPY OF THE QGP REVEALED THROUGH HIGH- p_{\perp} DATA Stefan Stojku, Institute of Physics Belgrade

IN COLLABORATION WITH: MAGDALENA DJORDJEVIC, MARKO DJORDJEVIC, JUSSI AUVINEN, LIDIJA ZIVKOVIC AND PASI HUOVINEN

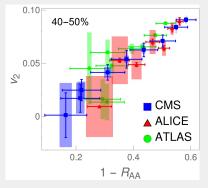
QGP TOMOGRAPHY

- Our main goal: use high- p_{\perp} data to infer bulk properties of QGP.
- Dynamical Radiative and Elastic ENergy Loss Approach: our numerical framework capable of generating high p_{\perp} predictions
 - High energy particles lose energy when they traverse QGP.
 - This energy loss is sensitive to QGP properties.
 - We can realistically predict this energy loss.

- High- p_{\perp} probes are excellent tomoraphy tools.
- We can use them to infer some of the bulk QGP properties.
- Initial spatial anisotropy: one of the main properties of QGP. One of the major limiting factors for QGP tomography.
- How to use high p_{\perp} data to infer spatial anisotropy of QGP?
- We propose a novel approach, based on inference from already available high- p_{\perp} R_{AA} and v_2 measurements.

1

 $T(\vec{x})$


ANISOTROPY

• We previously argued that at high- p_{\perp} , the ratio of elliptic flow parameter v_2 and $1 - R_{AA}$, where R_{AA} is the nuclear suppression factor saturates, and reflects only the geometry of the system. This argument was based on analytic considerations and simple 1-dimensional medium expansion.

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

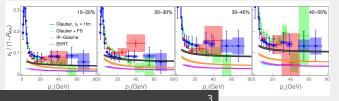
• We here study the behavior of $v_2/(1 - R_{AA})$ in a system that expands in both longitudinal and transversal directions.

Stefan Stojku, Jussi Auvinen, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

- It has been experimentally observed that v₂ and 1 − R_{AA} are directly proportional at high p_⊥.
- Such relationship is equivalent to a p_{\perp} -independent ratio of v_2 and $1 R_{AA}$.
- Can fluid dynamical calculations reproduce such proportionality? Can we relate this observation to a physical property of the system, namely to its anisotropy?

What happens when we include full medium evolution?

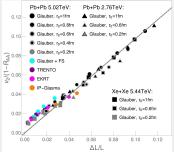
DREENA-A: can accomodate any temperature profile and generate high-p_⊥ R_{AA} and v₂ predictions. Check out the poster by Dušan Žigić.


D. Zigic, I. Salom, J. Auvinen, P. Huovinen and M. Djordjevic, arXiv:2110.01544 [nucl-th].

We visualize the temperatures partons experience in the in-plane and out-of-plane directions for different initializations and evolutions.

Stefan Stojku, Jussi Auvinen, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

■ Does $v_2/(1 - R_{AA})$ saturate? Does this saturation carry information on the anisotropy of the system? What kind of anisotropy measure is revealed through high- p_{\perp} data? We calculate $v_2/(1 - R_{AA})$ within DREENA-A framework:



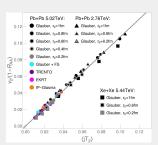
The phenomenon of $v_2/(1 - R_{AA})$ saturation is robust! How to explore if it contains information on the system anisotropy?

CONNECTION TO ANISOTROPY

Next: Plot charged hadrons' $v_2/(1 - R_{AA})$ [100GeV] vs. $\Delta L/\langle L \rangle$

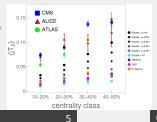
Stefan Stojku, Jussi Auvinen, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

- Centrality classes: 10-20%, 20-30%, 30-40%, 40-50%
- Surprisingly simple relation between $v_2/(1 R_{AA})$ and $\Delta L/\langle L \rangle$.
- Slope \approx 1.
- $v_2/(1 R_{AA})$ carries information on the system anisotropy, through $\Delta L/\langle L \rangle$.
- Can we define a more direct measure of anisotropy? With an explicit dependence on time evolution?
- We define *jT*:


$$jT(\tau,\phi) \equiv \frac{\int dxdy \, T^3(x+\tau\cos\phi, y+\tau\sin\phi, \tau) \, n_0(x,y)}{\int dxdy \, n_0(x,y)}$$

■ *jT* is not azimuthally symmetric. We define its 2nd Fourier coefficient *jT*₂: $jT_2(\tau) = \frac{\int dxdy \, n_0(x,y) \int \phi \cos 2\phi \, T^3(x + \tau \cos \phi, y + \tau \sin \phi, \tau)}{\int dxdy \, n_0(x,y) \int \phi \, T^3(x + \tau \cos \phi, y + \tau \sin \phi, \tau)}$

JET-TEMPERATURE ANISOTROPY


■ A simple time-average of *jT*₂: jet-temperature anisotropy:

Stefan Stojku, Jussi Auvinen, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

- *τ_{cut}*: the time when the center of the fireball has cooled to critical temperature *T_c*.
- $v_2/(1 R_{AA})$ shows a linear dependence on $\langle jT_2 \rangle$, with a slope close to 1.
- Therefore, $v_2/(1 R_{AA})$ carries information on this property of the medium.
- We evaluated $\langle jT_2 \rangle$ from experimentally measured $R_{AA}(p_{\perp})$ and $v_2(p_{\perp})$: the fitted ratio was converted to $\langle jT_2 \rangle$.
- All three experiments lead to similar values of $\langle jT_2 \rangle$.
- Jet-temperature anisotropy provides an important constraint on bulk-medium simulations - they should be tuned to reproduce it.

CONCLUSIONS AND ACKNOWLEDGEMENTS

- High- p_{\perp} theory and data traditionally used to explore high- p_{\perp} parton interactions with QGP.
- High-*p*_⊥ probes can become powerful tomography tools, as they are sensitive to global QGP properties (e.g. spatial anisotropy).
- A (modified) ratio of R_{AA} and v₂ a reliable and robust observable for straightforward extraction of spatial anisotropy.
- The saturation is directly proportional to jet-temperature anisotropy.
- It will be possible to infer anisotropy directly from LHC Run 3 data: an important constraint to models describing the early stages of QGP formation.
- Synergy of more common approaches for inferring QGP properties with high-p_⊥ theory and data.

European Research Council Established by the European Commission

МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА