K** production in Pb-Pb collisions at LHC

Prottay Das (for the ALICE collaboration)
National Institute of Science Education and Research
HBNI, Jatni India

- ✓ Introducton
- ✓ Signal extraction
- ✓ Results
- ✓ Summary

Introduction

✓ Resonances: Short lived particles which decay via strong interaction

✓ K** resonance is interesting becasue of its very short lifetime (~4 fm/c),

comparable to that of the hadronic phase

K** measured yield is affected by rescattering and regeneration effects

Recent measurement shows evidence of suppression of K*0/K with increasing multiplicity

- ✓ Similar measurement with K*± will confirm and complement the published K*0 results
- The first excited state measurements of kaon family is completed

Inelastic Collisions hadron momenta and yields change	π	(Pseudo-)elastic Collisions hadron momenta change, but most yields fixed K* Regeneration: pseudo-elastic	,	<u>a</u>
chemical	* freeze out	scattering through resonance state →increase in resonance yield π π	freeze out	(b)
	π K*	Re-scattering: elastic scattering smears out mass peak →reduces resonance yield		©
Yields of long-lived hadrons fixed▶	thr	e-scattering: pseudo-elastic scattering rough a different resonance state reduces yield of original resonance	Free	Hadrons

Properties of K**

Mass (GeV <i>lc</i> ²)	0.891
Width (GeV <i>lc</i> ²)	0.050
Quark content	иs
Decay mode	$K^0_s \pi^{\pm}$

Signal extraction

Dataset

Collision system	Pb-Pb
√s _{NN}	5.02 TeV
Events	120 M

Invariant mass method:

10/06/22

$$M_{K_{\alpha}^{0}\pi} = \sqrt{((E_{K_{\alpha}^{0}} + E_{\pi})^{2} - (\vec{p}_{K_{\alpha}^{0}} + \vec{p}_{\pi})^{2})}$$

Before background subtraction

After background subtraction

- Combinatorial bkg: Mixed event
- ✓ Fit function:
- Signal: Breit-Wigner
- Residual background: Exponential + 2nd order polynomial

Results

Normalized yield

Mean transverse momentum

- \checkmark Inverse slope of p_{τ} spectra increases with increasing multiplicity
- Normalised yield decreases with increasing multiplicity
- ✓ Normalised yield of K* is similar for 5.02 TeV and 2.76 TeV at similar $< dN_{ch}/d\eta >$
- \checkmark < p_{T} > increases with multiplicity
- \checkmark $< p_{T} >$ of proton is less than that of K*, Φ in peripheral collisions

Results

- K*/K yield ratio decreases with increasing system size, in contrast to φ/K which remains constant
- ✓ Models with rescaterring effect (MUSIC+SMASH and HRG-PCE) qualitatively describe the data
- Rescattering dominates over regeneration

Summary

- ✓ First measurement of K** is presented in Pb–Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV
- ✓ Event multiplicity drives K* yield
- $\sim < p_{\scriptscriptstyle T} >$ increases with multiplicity due to radial flow
- ✓ K*±/K yield ratio decreases with increasing system size
- HRG-PCE model and MUSIC+SMASH simulations qualitatively explain the measurements
- Results consistent with evidence of rescattering effects in the hadronic phase