The phi meson in nuclear matter from dilepton and K+K- decays

Philipp Gubler
Japan Atomic Energy Agency (JAEA)

Poster at the 20th International Conference on Strangeness in Quark Matter (SQM 2022) Busan, South Korea, June 13-17, 2022 Based on work done in collaboration with Elena Bratkovskaya (Frankfurt/GSI), Taesoo Song (Frankfurt) and ongoing discussions with Su Houng Lee (Yonsei U.) Hiroyuki Sako (JAEA)

Contents

- * Introduction: φ meson in nuclear matter
- ★ Transport Simulations of pA reactions with density dependent vector meson spectral functions
 - ★ Measuring the φ meson in nuclear matter: dilepton vs. K⁺K⁻ channels
 - ★ Considering electromagnetic and experimental rescattering effects on the dilepton spectra

Why should we be interested?

The φ meson mass in nuclear matter probes the strange quark condensate at finite density!

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

What does lattice QCD say about the strange sigma term?

$$\sigma_{sN} = m_s \langle N | \overline{s}s | N \rangle$$

http://flag.unibe.ch/2019/

See also the most recent result of the BMW collaboration: Sz. Borsanyi et al., arXiv:2007.03319 [hep-lat].

Combine QCD sum rules with lattice QCD

P. Gubler and K. Ohtani, Phys. Rev. D **90**, 094002 (2014).

Previous experimental results

KEK E325

12 GeV pA-reaction

slow qs

Pole mass:

$$\frac{m_{\phi}(\rho)}{m_{\phi}(0)} = 1 - k_{1} \frac{\rho}{\rho_{0}}$$

$$0.034 \pm 0.007$$

intermediate φs

Pole width:
$$\frac{\Gamma_\phi(\rho)}{\Gamma_\phi(0)} = 1 + k_2 \frac{\rho}{\rho_0}$$

$$2.6 \pm 1.5$$

fast φs

$$\beta \gamma = \frac{|\vec{p}|}{m_{\phi}}$$

βγ<1.25

Cu

βγ<1.25

[GeV/c2]

Measurement is being repeated with ~ 100x increased statistics at the J-PARC E16 experiment!

R. Muto et al. (E325 Collaboration), Phys. Rev. Lett. 98, 042501 (2007).

More recent experiments

HADES: 1.7 GeV π^- A-reaction

K⁺K⁻ - invariant mass spectrum

J. Adamczewski-Musch et al. (HADES Coll.), Phys. Rev. Lett. **123**, 022002 (2019).

S. Acharya et al. (ALICE Coll.), Phys. Rev. Lett. **127**, 172301 (2021).

ALICE: pp

How compare theory with experiment?

Information useful for theory

Experimental data

- ★ Spectral function as a function of density
- Mass at normal nuclear matter density
- ★ Decay width at normal nuclear matter density

Realistic simulation of pA reaction is needed!

Our tool: transport simulation HSD (Hadron String Dynamics)

E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A **807**, 214 (2008). W. Cassing and E.L. Bratkovskaya, Phys. Rev. C **78**, 034919 (2008).

Off-shell dynamics of vector mesons and kaons is included (dynamical modification of the mesonic spectral function during the simulated reaction)

off-shell terms

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \left[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} \operatorname{Re} \Sigma_{(i)}^{\text{fet}} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{P_{i}} \tilde{\Gamma}_{(i)} \right] \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \left[\vec{\nabla}_{X_{i}} \operatorname{Re} \Sigma_{i}^{\text{ret}} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{X_{i}} \tilde{\Gamma}_{(i)} \right], \\ \frac{d\varepsilon_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \left[\frac{\partial \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\partial t} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \frac{\partial \tilde{\Gamma}_{(i)}}{\partial t} \right], \end{split}$$

Testparticle approach:

Treatment of KN-interactions

Density dependent cross sections based on the chiral unitary model (including coupled channels and s-/p-wave of $\overline{K}N$ interactions)

Vacuum and density dependent $\overline{K}N$ cross sections

Density dependent \overline{K} spectral functions

T. Song et al., Phys. Rev. C **103**, 044901 (2021).

See talk by Taesoo Song

Advantage: vector meson spectra can be chosen freely

Our choice: a Breit-Wigner with density dependent mass and width

$$\delta M_{\phi}^*(\rho_0)[{
m MeV}]$$

What density does the φ feel in the reaction (p+Cu at 12 GeV)?

Majority of ϕ mesons are produced at densities around ρ_0

Majority of ϕ mesons decay in free space (note the log-scale!)

What density does the φ feel in different pA (p+Cu) reactions?

Larger densities are reached for larger incoming proton energy

Majority of ϕ mesons decay in free space (note the log-scale!)

The dilepton spectrum in the φ meson region

p + Cu at 12 GeV

No acceptance corrections!

No finite resolution effects!

Fits to experimental Copper target data (E325)

A significant negative mass shift is needed to reproduce the slow ϕ data

slow qs

Favors relatively large negative mass shift

intermediate φs

No strong constraints for any modification scenario

fast φs

Favors small mass shift

Fits to experimental Copper target data (KEK E325)

Confidence levels of combined Copper data

Conclusion of the E325 Collaboration

Best fit to E325 data (p + Cu at 12 GeV)

 $\delta m_{\phi}(\rho_0) = -34 \,\mathrm{MeV}$ $\Gamma(\rho_0) = 4$

 $\Gamma(\rho_0) = 4.3 \,\mathrm{MeV}$

vacuum value

slow φs

intermediate φs

fast φs

What about the K⁺K⁻ decay channel?

(new J-PARC proposal P88)

e-

Distortion of the in-medium φ meson signal in the K⁺K⁻ channel (p + Cu at 30 GeV)

Small distortion effect from the strong KN interaction !?

1.2

Absorption of kaons in nuclear matter

(p + Cu at 30 GeV)

Suppression due to repulsive K⁺N interaction??

Expected K⁺K⁻ invariant mass spectrum (incl. background)

p + Cu at 30 GeV

No acceptance corrections!

No finite resolution effects!

What about other effects?

★ Electromagnetic corrections to the dilepton spectrum?

Rescattering effects of dileptons on experimental environment?

Detailed information about the experiment is needed

Evidence for in-medium modification of the ϕ meson at normal nuclear density

Old PhD Thesis from the early 2000s

Ryotaro Muto

Both effects contribute roughly equally

Evidence for in-medium modification of the ϕ meson at normal nuclear density

Old PhD Thesis from the early 2000s

Ryotaro Muto

βγ-dependence of electromagnetic + rescattering effects

How do the electro + rescattering effects change the fits (Cu target)?

All βγ-regions combined (Cu target)

No modification scenario favored??

How do the electro + rescattering effects change the fits (C target)?

width [MeV]

All βγ-regions combined (C target)

Small modification scenario favored?

New fits to experimental Copper target data (E325)

slow qs

intermediate φs

fast φs

Possible solution?

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

Summary and Conclusions

Relating modification of QCD condensates with hadron properties in nuclear matter is a non-trivial multi-step process

- \bigstar For studying the modification of the φ meson spectral function experimentally at finite density, a good understanding of the underlying reactions is needed
- We conducted numerical simulations of the pA reactions measured at the E325 experiment at KEK, using the HSD transport code

Estimation of electromagnetic and rescattering effect is ongoing

* New J-PARC proposal P88 to measure the φ meson K⁺K⁻ decay channel

Distortion effects due to the strong KN interaction appears to be small

Backup slides

The strangeness content of the nucleon: $\sigma_{sN}=m_s\langle N|\overline{s}s|N\rangle$

A. Bottino, F. Donato, N. Fornengo and S. Scopel, Asropart. Phys. 18, 205 (2002).

Structure of QCD sum rules for the ϕ meson channel

(after application of the Borel transform)

$$\chi(x) = \overline{s}(x)\gamma_{\mu}s(x)$$

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$

In Vacuum

Dim. 0:
$$c_0(0) = 1 + \frac{\alpha_s}{\pi}$$

Dim. 2:
$$c_2(0) = -6m_s^2$$

Dim. 4:
$$c_4(0) = \frac{\pi^2}{3} \langle 0 | \frac{\alpha_s}{\pi} G^2 | 0 \rangle + 8\pi^2 m_s \langle 0 | \overline{s}s | 0 \rangle$$

Dim. 6:
$$c_6(0) = -\frac{448}{81} \kappa \pi^3 \alpha_s \langle 0 | \bar{s}s | 0 \rangle^2$$

Structure of QCD sum rules for the φ meson

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$

At finite density

(within the linear density approximation)

Dim. 0:
$$c_0(\rho) = c_0(0)$$

$$\langle \overline{s}s \rangle_{\rho} = \langle 0|\overline{s}s|0 \rangle + \langle N|\overline{s}s|N \rangle_{\rho} + \dots$$

Dim. 2:
$$c_2(\rho) = c_2(0)$$

Dim. 4:
$$c_4(\rho) = c_4(0) + \rho \left[-\frac{2}{27} M_N + \frac{56}{27} m_s \langle N | \overline{s}s | N \rangle + \frac{4}{27} m_q \langle N | \overline{q}q | N \rangle + A_2^s M_N - \frac{7}{12} \frac{\alpha_s}{\pi} A_2^g M_N \right]$$

Dim. 6:
$$c_6(\rho) = c_6(0) + \rho \left[-\frac{896}{81} \kappa_N \pi^3 \alpha_s \langle \bar{s}s \rangle \langle N | \bar{s}s | N \rangle - \frac{5}{6} A_4^s M_N^3 \right]$$

Results for the φ meson mass at rest

Most important parameter, that determines the behavior of the φ meson mass at finite density:

Strangeness content of the nucleon

P. Gubler and K. Ohtani, Phys. Rev. D **90**, 094002 (2014).

- ★ Larger suppression of K⁻ in the Tungsten target compared to the Carbon target
- ★ K⁻/φ ratio is similar for both Tungsten and Carbon targets

★ Observation of large suppression (broadening?) of the φ meson in large nuclei

K⁺K⁻ - invariant mass spectrum

New experimental results

ALICE (Femtoscopy)

The observable to be measured: the correlation function:

$$C(k) = \mathcal{N} \frac{N_{\mathrm{Same}}}{N_{\mathrm{Mixed}}} = \int S(\vec{r}) |\Psi(\vec{k}, \vec{r})|^2 d^3 \vec{r}$$
 Emission source (Gaussian) Relative momentum of the particle pair

S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett. 127, 172301 (2021).

New experimental results ALICE

Measurement of φN correlation

Extracted φN scattering length

Real part:

$$Re(f_0) = 0.85 \pm 0.34(stat.) \pm 0.14(syst.) fm$$

Attractive

Imaginary part:

$$Im(f_0) = 0.16 \pm 0.10(stat.) \pm 0.09(syst.) fm$$

Small absorption/broadening?

S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett. 127, 172301 (2021).

New experimental results ALICE

Fit of the correlation function data to two simple phenomenological potentials

$$V_{\text{Yukawa}}(r) = -\frac{A}{r}e^{-\alpha r}$$

 $A = 0.021 \pm 0.009 \, (\text{stat.}) \pm 0.006 \, (\text{syst.})$

$$\alpha = 65.9 \pm 38.0 \, (\mathrm{stat.}) \pm 17.5 \, (\mathrm{syst.}) \, \mathrm{MeV}$$

$$E_{\text{int}} = \int d^3 \vec{r} \int d^3 \vec{r}' \rho_N(\vec{r}) V(\vec{r} - \vec{r}') \rho_\phi(\vec{r}')$$

$$\rho_0 \qquad \delta^{(3)}(\vec{r}')$$

$$E_{\text{int}} = -\frac{4\pi A \rho_0}{\alpha^2}$$

= -79.3 \pm 108.8 MeV

$$V_{\text{Gaussian}}(r) = -V_{\text{eff}}e^{-\mu r^2}$$

 $V_{\rm eff.} = 2.5 \pm 0.9 \, ({\rm stat.}) \pm 1.4 \, ({\rm syst.}) \, {\rm MeV}$

$$\mu = 0.14 \pm 0.06 \,(\text{stat.}) \pm 0.09 \,(\text{syst.}) \,\text{fm}^{-2}$$

$$E_{\text{int}} = -\frac{\pi^{3/2} V_{\text{eff}} \rho_0}{\mu^{3/2}}$$
$$= -45.2 \pm 61.5 \,\text{MeV}$$

Larger attraction than what was observed at KEK 325, but large statistical and systematic uncertainties

S. Acharya et al. (ALICE Collaboration), arXiv:2105.05578 [nucl-ex].

Our tool: a transport approach

Basic Ingredient 1: Solve a Boltzmann-Uehling-Uhlenbeck (BUU) type equation for each particle type

$$\left(\frac{\partial}{\partial t} + \vec{\nabla}_p \epsilon \cdot \vec{\nabla}_r - \vec{\nabla}_r \epsilon \cdot \vec{\nabla}_p \right) f_a(\vec{r}, \vec{p}; t) = I_{\rm coll}[f_a(\vec{r}, \vec{p}; t)]$$
 Includes mean field particle distribution (tuned to reproduce function nuclear matter properties)

Basic Ingredient 2: "Testparticle" approach
$$f_h(\pmb{r},\pmb{p};t) = \frac{1}{N_{\text{test}}} \sum_{i}^{N_h(t) \times N_{\text{test}}} \delta(\pmb{r} - \pmb{r}_i(t)) \ \delta(\pmb{p} - \pmb{p}_i(t))$$

Example of a transport calculation

Au+Au collision at $s^{1/2} = 200$ GeV, b = 2 fm

Final step: comparison to experimental data

Potential issues:

Experimental background is not included in the simulation

★ Normalization of the experimental dilepton spectrum is not given

Fit to experimental data is necessary!

Dilepton spectrum: $\rho(\omega) = a\omega^2 + b\omega + c + A\rho_{\phi,\mathrm{HSD}}(\omega)$

Fitted to the experimental dilepton spectrum independently for each βγ-region

Reason for large modification for fast φ mesons

Initial stage of ϕ meson production

Density and By distributions for the different production mechanisms

βγ distribution at production

Low energy hadronic production occurs dominantly at the nuclear surface

For $\beta\gamma>1.5$, high energy ϕ meson production via strings dominates