

Contribution ID: 150 Contribution code: POS-OTH-06

Type: Poster

Studying Hadronization by Machine Learning Techniques

Tuesday 14 June 2022 17:20 (1 minute)

Hadronization is a non-perturbative process, which theoretical description can not be deduced from first principles. Modeling hadron formation, requires several assumptions and various phenomenological approaches. Utilizing state-of-the-art Computer Vision and Deep Learning algorithms, it is eventually possible to train neural networks to learn non-linear and non-perturbative features of the physical processes.

Here, I would like to present the results of two deep neural networks, by investigating global and kinematical quantities, indeed jet- and event-shape variables. The widely used Lund string fragmentation model is applied as a baseline in $\sqrt{s}=7$ TeV proton-proton collisions to predict the most relevant observables at further LHC energies. Non-liear QCD scaling properties were also identified and validated by experimental data.

Present via

Online

Authors: TANKO, Bartalis Bence (Wigner Research Centre for Physics); BIRO, Gabor (Wigner Research Centre for Physics (Wigner RCP) (HU)); BARNAFOLDI, Gergely (Hungarian Academy of Sciences (HU))

Presenters: BARNAFOLDI, Gergely (Hungarian Academy of Sciences (HU)); BARNAFOLDI, Gergely Gabor (Wigner Research Centre for Physics (Wigner RCP) (HU))

Session Classification: Poster

Track Classification: Other topics