

Contribution ID: 243 Type: Poster

## The mass-radius relations of neutron stars in an pion mean-field approach

Tuesday 14 June 2022 17:10 (1 minute)

We investigate the masses and radii of neutron stars within the framework of the in-medium modified chiral soliton model, considering the effects of surrounding baryonic environment on the properties of in-medium baryons. The equation of state describing an infinite and asymmetric nuclear matter are obtained by introducing the density-dependent functions. To extrapolate the high density and highly isospin asymmetric region, we study the masses and radii of neutron stars. The results predict the masses and radii to be  $^{-}1.4M_{\odot}$  and  $^{-}2M_{\odot}$ , respectively. We discuss the physical meaning of the equation of state obtained from the chiral solitonic approach, based on the present results.

## Present via

Primary authors: Prof. YANG, Ghil-Seok (Hoseo University); GHIM, Namyong (Inha University); YAKHSHIEV,

Ulugbek

Co-author: KIM, Hyun-Chul (Inha University)

Presenter: GHIM, Namyong (Inha University)

Session Classification: Poster

Track Classification: Other topics