Mesonic strange Resonances in P + P COLLISIONS AT SPS ENERGIES

Angelika Tefelska for the NA61/SHINE Collaboration

${ }^{1}$ Warsaw University of Technology

This work was supported by the WUT ID-UB.

$K^{*}(892)^{0}$ AND $\phi(1020)$ ANALYSIS MOTIVATION

$$
\begin{aligned}
& K^{*}(892)=d \bar{s} \text { meson } \\
& \text { - Mass } m=895.55 \pm 0.20 \mathrm{MeV} \\
& \text { - Width } \Gamma=47.3 \pm 0.5 \mathrm{MeV}(\tau \cong 4.17 \mathrm{fm} / \mathrm{c}) \\
& \phi(1020)=s \bar{s} \text { meson } \\
& \text { - Mass } m=1019.461 \pm 0.016 \mathrm{MeV} \\
& \text { - Width } \Gamma=4.249 \pm 0.01 \mathrm{MeV}(\tau \cong 46 \mathrm{fm} / \mathrm{c})
\end{aligned}
$$

- The resonance yield is affected by regeneration and rescattering processes
- Momenta of K^{*} decay products can be modified due to elastic scatterings during the rescattering process \rightarrow suppression of observed K^{*} yield
- ϕ yield should not be affected by rescattering and regeneration processes due to longer lifetime
- ϕ / K and $K^{*} / K \rightarrow$ studying rescattering effects in heavy-ion collisions
- K^{*} / K^{-}or $K^{*} / K^{+} \rightarrow$ time between chemical and kinetic freeze-outs, properties of hadron gas phase (STAR, PR C71, 064902, 2005; C. Blume, APP B43, 577, 2012)
- ϕ interesting due to its hidden strangeness ($s \bar{s}$)
- K^{*} and ϕ - reference data to Blast-Wave models and statistical Hadron Resonance Gas models

Rapidity Spectrum of $K^{*}(892)^{0}$ and $\phi(1020)$ For P+P at $40-158 \mathrm{GEV} / \mathrm{c}$

$K^{*}(892)^{0}$ results from: EPJ C80, 5, 460, 2020; EPJ C82, 4, 322, 2022
$\phi(1020)$ results from: EPJ C80, 3, 199, 2020

- Gaussian fit: $f(y)=a \cdot e^{-\frac{y^{2}}{2 \sigma_{y}^{2}}}$
- $\left\langle K^{*}\right\rangle$ and $\langle\phi\rangle$ are calculated by summing points (only for $\mathrm{y}>0$) and adding integral values in non-measured area

$\sqrt{s_{N N}}$	$\left\langle K^{*}\right\rangle\left[\cdot 10^{-3}\right]$	$\langle\phi\rangle\left[\cdot 10^{-3}\right]$
8.8	$35.1 \pm 1.3 \pm 3.6$	$5.87 \pm 0.35 \pm 0.44$
12.3	$58.3 \pm 1.9 \pm 4.9$	$7.89 \pm 0.29 \pm 0.39$
17.3	$78.44 \pm 0.38 \pm 6.0$	$12.56 \pm 0.33 \pm 0.32$

System size dependence of $K^{*}(892)^{0}$ To charged kaon ratio

- K^{*} / K^{-}or $K^{*} / K^{+} \rightarrow$ time between chemical and kinetic freeze-outs, properties of hadron gas phase (STAR, PR C71, 064902, 2005; C. Blume, APP B43, 577, 2012)

$$
\begin{equation*}
\left.\frac{K^{*}}{K}\right|_{\text {kinetic }}=\left.\frac{K^{*}}{K}\right|_{\text {chemical }} e^{-\frac{\Delta t}{\tau}} \tag{1}
\end{equation*}
$$

Assumption: no regeneration processes
Ratio for kinetic freeze-out from $\mathrm{Pb}+\mathrm{Pb}$ interact.;
Ratio for chemical freeze-out from $\mathrm{p}+\mathrm{p}$ interact.;

- Δt in the collision center-of-mass reference system for $\mathrm{p}+\mathrm{p}$ at $158 \mathrm{GeV} / \mathrm{c}$:
- $5.3 \mathrm{fm} / \mathrm{c}$ for $K^{*}(892)^{0} / K^{+}$
- $4.6 \mathrm{fm} / \mathrm{c}$ for $K^{*}(892)^{0} / K^{-}$
- Δt at SPS $>\Delta t$ at RHIC (at corresponding centrality), NA61/SHINE, EPJ C80, 5, 460, 2020.
\rightarrow regeneration effects may be significant at higher energies
- Regeneration effects may exist also at SPS \rightarrow obtained Δt is lower limit of time between freeze-outs
- Reference ion data are needed to estimate Δt at lower energies ($K^{*} / K^{ \pm}$for $\mathrm{p}+\mathrm{p}$ data already exist - left plot)

STRANGENESS ENHANCEMENT

- $\langle\phi\rangle /\langle\pi\rangle$ ratio increases with collision energy
- ϕ production is enhanced roughly threefold for all 3 measured energies
- The strangeness enhancement of ϕ mesons can be compared to $\left\langle K^{+}\right\rangle /\left\langle\pi^{+}\right\rangle$and $\left\langle K^{-}\right\rangle /\left\langle\pi^{-}\right\rangle$; it is systematically larger for ϕ mesons than for kaons, being however comparable to that for positive kaons

BLAST-WAVE MODEL FITS

- The fitted formula follows: $\frac{d^{2} n_{i}}{m_{T} d m_{T} d y}=A_{i} m_{T} K_{1}\left(\frac{m_{T} \cosh \rho}{T_{f o}}\right) I_{0}\left(\frac{p_{T} \sinh \rho}{T_{f_{0}}}\right)$, where I_{0} and K_{1} are the modified Bessel functions, A_{i} are the fitted normalization parameters, and index i refers to different particle species. The fit parameter ρ is related to the transverse flow velocity by $\rho=\tanh ^{-1} \beta_{\mathrm{T}}$
- The obtained thermal freeze-out temperatures ($T_{f o}$) vary between 134 and 147 MeV
- β_{T} are close to $0.1-0.2$ of the speed of light. The β_{T} values for $\mathrm{p}+\mathrm{p}$ collisions are significantly smaller than the ones determined by NA49 in central $\mathrm{Pb}+\mathrm{Pb}$ interactions

Back-up

Methodology - Template Method

$y \in(0.5,1.0), p_{T} \in(0.2,0.4) \mathrm{GeV} / \mathrm{c}, \mathrm{p}+\mathrm{p} @ 158 \mathrm{GeV} / \mathrm{c}$

$y \in(0.5,1.0), p_{T} \in(0.2,0.4) \mathrm{GeV} / \mathrm{c}, \mathrm{p}+\mathrm{p} @ 158 \mathrm{GeV} / \mathrm{c}$

NA61/SHINE, EPJ C80, 5, 460, 2020

- The p+p data was analysis for $40 \mathrm{GeV} / \mathrm{c}$ $\left(1.34 \cdot 10^{6}\right.$ events), $80 \mathrm{GeV} / c\left(1.26 \cdot 10^{6}\right.$ events) and $158 \mathrm{GeV} / \mathrm{c}\left(27.9 \cdot 10^{6}\right.$ events)
- Signal extraction was done by extracting the resonances and correlated background:

$$
\begin{array}{r}
f\left(m_{i n v}\right)=a \cdot T_{r e s}^{M C}\left(m_{i n v}\right)+b \cdot T_{m i x}^{D A T A}\left(m_{i n v}\right) \\
+c \cdot B W\left(m_{i n v}\right) \tag{2}
\end{array}
$$

where:

- $T_{\text {res }}^{M C}$ - resonance background template from reconstructed Monte Carlo data ($K^{+} \pi^{-}$pairs, which come from resonance decay with exception of $\left.K^{*}(892)^{0}\right)$
- $T_{\text {mix }}^{\text {DATA }}$ - uncorrelated background from mixed events
- $B W\left(m_{i n v}\right)$ - Breit-Wigner distribution:

$$
\begin{equation*}
B W\left(m_{i n v}\right)=A \cdot \frac{\frac{1}{4} \cdot \Gamma^{2}}{\left(m_{i n v}-m_{o}\right)^{2}+\frac{1}{4} \Gamma^{2}} \tag{3}
\end{equation*}
$$

- a, b, c - normalisation const $(a+b+c=1)$

p+p at $158 \mathrm{GeV} / \mathrm{c}$ results from EPJ C80, 5, 460, 2020;
$\mathrm{p}+\mathrm{p}$ at 40 and $80 \mathrm{GeV} / \mathrm{c}$ from EPJ C82, 4, 322, 2022
- HRG by V. Begun et al. (PR C98, 054909, 2018) in the Canonical Ensemble (CE):
- Red triangles correspond to the HRG fits with the ϕ meson multiplicities included
- Violet triangles represent the situation where the ϕ mesons were not included in the HRG model fits
- Blue start correspond to the HRG fits in GCE with ϕ meson included
- Small p+p collision can be described by GCE
- p+p data can be described by CE only for fit with ϕ meson excluded

$K^{* 0}$ MASS AND WIDTH

