Mesonic strange resonances in P+P Collisions at SPS energies

Angelika Tefelska for the NA61/SHINE Collaboration

¹Warsaw University of Technology

This work was supported by the WUT ID-UB.

Angelika Tefelska (WUT)

SQM 2022

$K^*(892)^0$ and $\phi(1020)$ analysis motivation

 $K^*(892) = d\bar{s}$ meson

- Mass $m = 895.55 \pm 0.20$ MeV
- Width $\Gamma = 47.3 \pm 0.5$ MeV ($\tau \cong 4.17$ fm/c)

 $\phi(1020) = s\bar{s}$ meson

- Mass $m = 1019.461 \pm 0.016$ MeV
- Width $\Gamma = 4.249 \pm 0.01$ MeV ($\tau \cong 46$ fm/c)

- The resonance yield is affected by regeneration and rescattering processes
- Momenta of K* decay products can be modified due to elastic scatterings during the rescattering process → suppression of observed K* yield
- φ yield should not be affected by rescattering and regeneration processes due to longer lifetime
- ϕ/K and $K^*/K \rightarrow$ studying rescattering effects in heavy-ion collisions
- K*/K⁻ or K*/K⁺ → time between chemical and kinetic freeze-outs, properties of hadron gas phase (STAR, PR C71, 064902, 2005; C. Blume, APP B43, 577, 2012)
- φ interesting due to its hidden strangeness (ss̄)
- K^* and ϕ reference data to Blast-Wave models and statistical Hadron Resonance Gas models

RAPIDITY SPECTRUM OF $K^*(892)^0$ and $\phi(1020)$ for P+P at 40-158 GeV/c

 $\begin{array}{l} {\it K}^{*}\,(892)^{0} \;\; {\rm results}\; {\rm from} : {\rm EPJ}\; {\rm C80},\; 5,\; 460,\; 2020;\\ {\rm EPJ}\; {\rm C82},\; 4,\; 322,\; 2022\\ \phi(1020)\;\; {\rm results}\; {\rm from} : {\rm EPJ}\; {\rm C80},\; 3,\; 199,\; 2020 \end{array}$

- Gaussian fit: $f(y) = a \cdot e^{-\frac{y}{2\sigma_y^2}}$
- (K*) and (φ) are calculated by summing points (only for y>0) and adding integral values in non-measured area

$\sqrt{s_{NN}}$	$\langle K^* \rangle \ [\cdot 10^{-3}]$	$\langle \phi \rangle \ [\cdot 10^{-3}]$
8.8	$35.1 \pm 1.3 \pm 3.6$	$5.87 \pm 0.35 \pm 0.44$
12.3	$58.3 \pm 1.9 \pm 4.9$	$7.89 \pm 0.29 \pm 0.39$
17.3	$78.44 \pm 0.38 \pm 6.0$	$12.56 \pm 0.33 \pm 0.32$

Angelika Tefelska (WUT)

System size dependence of $K^*(892)^0$ to charged kaon ratio

 K^{*}/K[−] or K^{*}/K⁺ → time between chemical and kinetic freeze-outs, properties of hadron gas phase (STAR, PR C71, 064902, 2005; C. Blume, APP B43, 577, 2012)

$$\frac{\zeta^{*}}{K}\Big|_{kinetic} = \frac{K^{*}}{K}\Big|_{chemical} e^{-\frac{\Delta t}{\tau}}$$
(1)

Assumption: no regeneration processes Ratio for kinetic freeze-out from Pb+Pb interact.; Ratio for chemical freeze-out from p+p interact.;

- Δt in the collision center-of-mass reference system for p+p at 158 GeV/c:
 - 5.3 fm/c for K*(892)⁰/K⁺
 - 4.6 fm/c for K*(892)⁰/K⁻
- Δt at SPS > Δt at RHIC (at corresponding centrality), NA61/SHINE, EPJ C80, 5, 460, 2020.
 → regeneration effects may be significant at higher energies
- Regeneration effects may exist also at SPS \rightarrow obtained Δt is lower limit of time between

freeze-outs

 Reference ion data are needed to estimate Δt at lower energies (K^{*}/K[±] for p+p data already exist – left plot)

Angelika Tefelska (WUT)

STRANGENESS ENHANCEMENT

• $\langle \phi \rangle / \langle \pi \rangle$ ratio increases with collision energy

- ϕ production is enhanced roughly threefold for all 3 measured energies
- The strangeness enhancement of ϕ mesons can be compared to $\langle K^+ \rangle / \langle \pi^+ \rangle$ and $\langle K^- \rangle / \langle \pi^- \rangle$; it is systematically larger for ϕ mesons than for kaons, being however comparable to that for positive kaons

BLAST-WAVE MODEL FITS

- The fitted formula follows: $\frac{d^2n_i}{m_T dm_T dy} = A_i m_T K_1 \left(\frac{m_T \cosh \rho}{T_{fo}}\right) I_0 \left(\frac{p_T \sinh \rho}{T_{fo}}\right)$, where I_0 and K_1 are the modified Bessel functions, A_i are the fitted normalization parameters, and index *i* refers to different particle species. The fit parameter ρ is related to the transverse flow velocity by $\rho = tanh^{-1}\beta_T$
- The obtained thermal freeze-out temperatures (T_{fo}) vary between 134 and 147 MeV
- β_T are close to 0.1–0.2 of the speed of light. The β_T values for p+p collisions are significantly smaller than the ones determined by NA49 in central Pb+Pb interactions

Back-up

METHODOLOGY - TEMPLATE METHOD

NA61/SHINE, EPJ C80, 5, 460, 2020

- The p+p data was analysis for 40 GeV/c $(1.34 \cdot 10^6 \text{ events}), 80 \text{ GeV}/c (1.26 \cdot 10^6)$ events) and 158 GeV/c (27.9 \cdot 10⁶ events)
- Signal extraction was done by extracting the resonances and correlated background:

$$f(m_{inv}) = a \cdot T_{res}^{MC}(m_{inv}) + b \cdot T_{mix}^{DATA}(m_{inv}) + c \cdot BW(m_{inv})$$

here: (2)

where:

- T_{res}^{MC} resonance background template from reconstructed Monte Carlo data $(K^+\pi^-)$ pairs, which come from resonance decay with exception of $K^*(892)^0$)
- T_{mix}^{DATA} uncorrelated background from mixed events
- BW(m_{inv}) Breit-Wigner distribution:

$$BW(m_{inv}) = A \cdot \frac{\frac{1}{4} \cdot \Gamma^2}{(m_{inv} - m_o)^2 + \frac{1}{4}\Gamma^2}$$
(3)

• *a*, *b*, *c* - normalisation const (a+b+c=1)

Angelika Tefelska (WUT)

SQM 2022

p+p at 158 GeV/c results from EPJ C80, 5, 460, 2020; p+p at 40 and 80 GeV/c from EPJ C82, 4, 322, 2022

- HRG by V. Begun et al. (PR C98, 054909, 2018) in the Canonical Ensemble (CE):
 - Red triangles correspond to the HRG fits with the ϕ meson multiplicities included
 - Violet triangles represent the situation where the ϕ mesons were not included in the HRG model fits
 - Blue start correspond to the HRG fits in GCE with ϕ meson included
- Small p+p collision can be described by GCE
- p+p data can be described by CE only for fit with ϕ meson excluded

K^{*0} mass and width

- Mass and width were calculated in the range $y \in (0.0; 0.5)$ for p+p at 158 GeV/c
- Mass and width were calculated in the range y∈(0.0; 1.5) for p+p at 40 and 80 GeV/c
- The values of mass and width of *K** are generally close to the PDG results