Insights into the initial conditions and evolution of hadronic collisions with flow observables

Strangeness in Quark Matter, Busan, Republic of Korea
Vytautas Vislavicius, Lund University, Sweden
June 16th, 2022
From collisions to measurements
From collisions to measurements

- Overlap between colliding nuclei:
 ⇒ Initial state, geometry & its fluctuations
From collisions to measurements

• Overlap between colliding nuclei:
 ➔ Initial state, geometry & its fluctuations

• Hydrodynamic expansion of QGP:
 ➔ Radial and anisotropic flow, sensitive to initial state and properties of QGP

From collisions to measurements

- Overlap between colliding nuclei:
 - Initial state, geometry & its fluctuations

- Hydrodynamic expansion of QGP:
 - Radial and anisotropic flow, sensitive to initial state and properties of QGP
From collisions to measurements

- Overlap between colliding nuclei:
 ⇒ Initial state, geometry & its fluctuations

- Hydrodynamic expansion of QGP:
 ⇒ Radial and anisotropic flow, sensitive to initial state and properties of QGP

What can we learn about the initial state and properties of QGP from the measurements of radial and anisotropic flow?
v_2 of baryons and mesons in Pb—Pb

- Measurements of v_2:
 - Baryon/meson ordering and crossing

![Graph showing v_2 vs. p_T for different particles in Pb—Pb collisions](image)
\(\nu_2 \) of baryons and mesons in Pb–Pb comparison to hydro model

- Measurements of \(\nu_2 \):
 - Baryon/meson ordering and crossing
 - Hydro + fragmentation:
 - underestimates the data in most cases
 - Baryon/meson crossing predicted
 - Arises from species-dependent \(p_T \) cut, where fragmentation dominates over hydro
v_2 of baryons and mesons in Pb–Pb comparison to hydro model

- Measurements of v_2:
 ⇒ Baryon/meson ordering and crossing
- Hydro + fragmentation:
 ✗ Underestimates the data in most cases
 ✓ Baryon/meson crossing predicted
 ⇒ Arises from species-dependent p_T cut, where fragmentation dominates over hydro
- Hydro + coalescence + fragmentation:
 ✓ Significantly better description of data
- But crossing is not unique to coalescence!
v_2 fluctuations of baryons and mesons in Pb–Pb collisions

- Emerging p_T dependence from central to peripheral collisions
- Baryon/meson grouping in semi-central collisions
 - Different from that observed for v_2
 - Could point to a different origin of this observation

\[F(v_2) = \frac{\sigma(v_2)}{v_2} \]

 ALICE, arXiv:2206.04587 [nucl-ex]
\(\nu_2 \) fluctuations: skewness and kurtosis in Pb—Pb collisions

Measure \(\nu_2 \) with multiparticle cumulants:

\(\Rightarrow \) Sensitive to underlying \(\nu_2 \) probability density function (PDF) and thus initial geometry

- Skewness (\(\gamma_1 \)) decreasing with centrality, PDF becoming less symmetric
- Kurtosis (\(\gamma_2 \)) increasing with centrality, tails become "fatter"

Do \(\gamma_1, \gamma_2 \) probe initial geometry exclusively?
ν_2 fluctuations: skewness and kurtosis in Pb—Pb collisions

Measure ν_2 with multiparticle cumulants:

⇒ Sensitive to underlying ν_2 probability density function (PDF) and thus initial geometry

- Skewness (γ_1) decreasing with centrality, PDF becoming less symmetric
- Kurtosis (γ_2) increasing with centrality, tails become “fatter”

Do γ_1, γ_2 probe initial geometry exclusively?

Not necessarily!

- Both γ_1 and γ_2 show evolution with p_T

⇒ Suggests that ν_2 PDF is modified by the evolution of QGP
Flow vector fluctuations in Pb—Pb

Flow factorisation ratio

\[r_n = \frac{\langle v^a_n v^n_t \cos[n (\Psi^a_n - \Psi^n_t)] \rangle}{\sqrt{\langle v^a_n, 2 \rangle \langle v^n_t, 2 \rangle}} \]

(trigger and associated)
Flow vector fluctuations in Pb—Pb

Flow factorisation ratio

\[r_n = \frac{\langle v_a^i v_n^i \cos[n(\Psi_n^a - \Psi_n^t)] \rangle}{\sqrt{\langle v_n^{a,2} \rangle \langle v_n^{t,2} \rangle}} \]

(trigger and associated)

Largest fluctuations in central Pb—Pb collisions at high \(p_T \) ⇒ large event-by-event fluctuations in the initial state

\[\langle v_n^{a,2} \rangle \langle v_n^{t,2} \rangle \]
Flow factorisation ratio $r_n = \frac{\langle v^a_n v^t_n \cos[n (\Psi^a_n - \Psi^t_n)] \rangle}{\sqrt{\langle v^a_n \rangle^2 \langle v^t_n \rangle^2}}$

(trigger and associated)

Largest fluctuations in central Pb—Pb collisions at high $p_T \Rightarrow$ large event-by-event fluctuations in the initial state

Deviations from $r_n = 1$ can be due to:

- **Flow angle fluctuations,**
 $$\langle \cos \left[n (\Psi^a_n - \Psi^t_n) \right] \rangle \neq 1$$

- **Flow magnitude fluctuations,**
 $$\langle v^a_n v^t_n \rangle \neq \sqrt{\langle v^a_n \rangle^2 \langle v^t_n \rangle^2}$$

- Cannot be measured directly, but upper/lower limits can be estimated
Flow factorisation ratio $r_n = \frac{\langle v_n^a v_n^t \cos[n (\Psi_n^a - \Psi_n^t)] \rangle}{\sqrt{\langle v_n^{a,2} \rangle \langle v_n^{t,2} \rangle}}$

(Trigger and associated)

Largest fluctuations in central Pb–Pb collisions at high $p_T \Rightarrow$ large event-by-event fluctuations in the initial state

Deviations from $r_n = 1$ can be due to:

- **Flow angle fluctuations,**
 \[
 \langle \cos \left[n \left(\Psi_n^a - \Psi_n^t \right) \right] \rangle \neq 1
 \]

- **Flow magnitude fluctuations,**
 \[
 \langle v_n^a v_n^t \rangle \neq \sqrt{\langle v_n^{a,2} \rangle \langle v_n^{t,2} \rangle}
 \]

- Cannot be measured directly, but upper/lower limits can be estimated

Flow angle fluctuations

- Sensitive to fluctuations in initial state, little sensitivity to η/s
Flow vector fluctuations in Pb—Pb

Flow factorisation ratio

\[r_n = \frac{\langle v_n^a v_n^t \cos[n (\Psi_n^a - \Psi_n^t)] \rangle}{\sqrt{\langle v_n^a \rangle^2 \langle v_n^t \rangle^2}} \]

(trigger and associated)

Largest fluctuations in central Pb—Pb collisions at high \(p_T \) ⇒ large event-by-event fluctuations in the initial state

Deviations from \(r_n = 1 \) can be due to:

- **Flow angle fluctuations,**
 \[\langle \cos \left[n (\Psi_n^a - \Psi_n^t) \right] \rangle \neq 1 \]

- **Flow magnitude fluctuations,**
 \[\langle v_n^a v_n^t \rangle \neq \sqrt{\langle v_n^a \rangle^2 \langle v_n^t \rangle^2} \]

- Cannot be measured directly, but upper/lower limits can be estimated

\[r_n = 1 \langle \cos \left[n (\Psi_n^a - \Psi_n^t) \right] \rangle \neq 1 \]

\[\langle v_n^a \rangle \langle v_n^t \rangle \neq \langle v_n^a \rangle \langle v_n^t \rangle \]

• Sensitive to fluctuations in initial state, little sensitivity to \(\eta/s \)
• Strong sensitivity to shear viscosity, but only in the most central collisions
Flow vector fluctuation limits in Pb—Pb

Flow factorisation ratio (trigger and associated)

Largest fluctuations in central Pb—Pb collisions at high \(p_T \) ⇒ large event-by-event fluctuations in the initial state

- At least 40% of fluctuations in central collisions originate from flow angle fluctuations
- Above 30% centrality, flow magnitude fluctuations are suppressed

First measurement separating flow angle and magnitude fluctuations ⇒ Challenges the assumption of a common symmetry plane

\[\langle \cos 2[\Psi_2(p_T^A)-\Psi_2] \rangle_{\text{min}} \]

\[\langle v_2(p_T^A)v_2 \rangle / \langle (v_2^2(p_T^A))^{1/2} \max \rangle \]

\[v_2(2)/v_2[2] \]

ALICE, \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \), 3 < \(p_T^A < 4 \text{ GeV/c} \)

Data

AMPT

\[\text{relative contribution} \]

\[\text{absolute contribution} \]
Correlation between $[p_T]$ and v_2

- Shape of the fireball: anisotropic flow, $\varepsilon_n \rightarrow v_n$
- Size of the fireball: radial flow, $[p_T], 1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between v_n and $[p_T]$

\Rightarrow Study with Pearson correlation coefficient:

$$
\rho_n \left(v_n^2, [p_T] \right) = \frac{\text{cov} \left(v_n^2, [p_T] \right)}{\sqrt{\text{var} \left(v_n^2 \right)} \sqrt{\text{var} \left([p_T] \right)}}
$$
Correlation between \([p_T]\) and \(v_2\)
and deformation of nuclei

- Shape of the fireball: anisotropic flow, \(\varepsilon_n \rightarrow v_n\)
- Size of the fireball: radial flow, \([\rho_T]\), \(1/R \rightarrow [p_T]\)
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between \(v_n\) and \([p_T]\)

\(\rightarrow\) Study with Pearson correlation coefficient:

\[
\rho_n \left(v_n^2, [p_T] \right) = \frac{\text{cov} \left(v_n^2, [p_T] \right)}{\sqrt{\text{var} \left(v_n^2 \right)} \sqrt{\text{var} \left([p_T] \right)}}
\]

\(\Rightarrow\) \(\rho_2\) is significantly smaller in central collisions of deformed Xe nuclei (deformation parameter \(\beta_2 \approx 0.16\)) compared to spherical Pb (\(\beta_2 \approx 0\))

Correlation between $[p_T]$ and ν_2
at low multiplicity

- Shape of the fireball: anisotropic flow, $\varepsilon_n \rightarrow \nu_n$
- Size of the fireball: radial flow, $[p_T]$, $1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between ν_n and $[p_T]$

⇒ Study with Pearson correlation coefficient:

$$\rho_n\left(\nu_n^2, [p_T]\right) = \frac{\text{cov}\left(\nu_n^2, [p_T]\right)}{\sqrt{\text{var}\left(\nu_n^2\right)} \sqrt{\text{var}\left([p_T]\right)}}$$
Correlation between $[p_T]$ and v_2

at low multiplicity

- Shape of the fireball: anisotropic flow, $\varepsilon_n \rightarrow v_n$
- Size of the fireball: radial flow, $[p_T], 1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between v_n and $[p_T]$

⇒ Study with Pearson correlation coefficient:

$$\rho_n\left(v_n^2, [p_T]\right) = \frac{\text{cov}\left(v_n^2, [p_T]\right)}{\sqrt{\text{var}\left(v_n^2\right)} \sqrt{\text{var}\left([p_T]\right)}}$$
Correlation between $[p_T]$ and v_2 at low multiplicity

- Shape of the fireball: anisotropic flow, $\varepsilon_n \rightarrow v_n$
- Size of the fireball: radial flow, $[p_T]$, $1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between v_n and $[p_T]$

\Rightarrow Study with Pearson correlation coefficient:

$$
\rho_n \left(v_n^2, [p_T] \right) = \frac{\text{cov} \left(v_n^2, [p_T] \right)}{\sqrt{\text{var} \left(v_n^2 \right)} \sqrt{\text{var} \left([p_T] \right)}}
$$

Low multiplicity: geometry \rightarrow initial momentum correlations

\Rightarrow Change of slope sign \rightarrow presence of CGC?
Correlation between $[p_T]$ and v_2 in Pb—Pb and Xe—Xe collisions

• ρ_2 slightly larger in Pb—Pb compared to Xe—Xe

• Comparison to models:
 – Below 20% centrality, all models provide a decent description
 – More peripheral \rightarrow best described by models with IP-Glasma

• Xe—Xe:
 – $\beta_2 = 0.162$ gives better description in most central collisions, similar to $\beta_2 = 0$ in more peripheral
Correlation between $[p_T]$ and v_2

in Pb–Pb at low multiplicity

$\rho(v_2^2, [p_T])$ in Pb–Pb:
- Decreasing + increasing trend at low multiplicity
Correlation between $[p_T]$ and v_2 in Pb—Pb at low multiplicity

$\rho(v_2^2, [p_T])$ in Pb—Pb:

• Decreasing + increasing trend at low multiplicity

• Sensitive to p_T interval...

Three-subevent method
Pb+Pb 5.02 TeV, 22µb$^{-1}$
$|\eta| < 2.5$

ATLAS
ΣE_T-based

Centrality [%]

$0.5 < p_T < 5.0$ GeV

$0.5 < p_T < 2.0$ GeV

ATLAS, 2205.00039 [nucl-ex]
Correlation between $[p_T]$ and v_2 in Pb—Pb at low multiplicity

$\rho(v_2^2, [p_T])$ in Pb—Pb:

- Decreasing + increasing trend at low multiplicity
- Sensitive to p_T interval...
- and pseudorapidity range...

ATLAS, 2205.00039 [nucl-ex]
Correlation between $[p_T]$ and v_2

in Pb—Pb at low multiplicity

$\rho(v_2^2, [p_T])$ in Pb—Pb:

• Decreasing + increasing trend at low multiplicity

• Sensitive to p_T interval…

• and pseudorapidity range…

• and even the multiplicity estimator

Three-subevent method
Pb+Pb 5.02 TeV, 22µb⁻¹
$0.5 < p_T < 5.0$ GeV
$|\eta| < 2.5$
Correlation between \([p_T]\) and \(v_2\) comparison to models

\[\rho(v_2^2, [p_T]) \] in Pb—Pb:

- **IP-glasma+MUSIC+UrQMD:**
 - Slope change around 20 charged tracks, significantly lower than in data
- **AMPT:**
 - Change of slope also observed, although at significantly higher \(N_{\text{ch}}\)

\[\Rightarrow \text{Slope change not exclusive to IP-Glasma} \]

\[\rho(v_2^2, [p_T]) \] in pp:

- Consistent with Pb—Pb at similar \(N_{\text{ch}}\)
- Underestimated by AMPT, overestimated by PYTHIA
Summary

• Relative flow fluctuations: emerging p_T dependence in peripheral collisions

• Higher moments of v_2 PDF: evolution with centrality and p_T suggests sensitivity to initial geometry and transport properties of QGP

• First ever measurement separating flow angle and flow magnitude fluctuations
 ➔ Dominated by flow angle fluctuations
 ➔ Challenges the assumption of a single event-averaged symmetry plane

• Correlations between $[p_T]$ and v_2:
 ➔ Highly sensitive to kinematic cuts and multiplicity estimator
 ➔ Data better described by models with IP-Glasma in initial conditions
 ➔ Observed decreasing trend at small N_{ch} in Pb—Pb collisions
 ➔ Change of slope at low N_{ch} sensitive to interplay between initial conditions and geometry
Backup
From collisions to measurement

- Overlap between colliding nuclei:
 ⇒ Initial state, geometry & its fluctuations

- Hydrodynamic expansion of QGP:
 ⇒ Radial and anisotropic flow, sensitive to initial state and properties of QGP

⇒ (Non-)Gaussian probability density function of v_n
 sensitive to initial state eccentricity ε_n
⇒ v_n fluctuations measured w.r.t. averaged Ψ_n
ν_2 fluctuations and ν_2 ratios in Pb–Pb collisions
ν_2 fluctuations and ν_2 ratios in Pb—Pb collisions
Define flow factorisation as

\[r_n = \frac{V_n(\Delta p_T^a, p_T^t)}{\sqrt{V_n(\Delta p_T^a, p_T^a) \cdot V_n(\Delta p_T^t, p_T^t)}} = \frac{\langle v_n^a v_n^t \cos[n(\Psi_n^a - \Psi_n^t)] \rangle}{\sqrt{\langle v_n^a v_n^t \rangle^2}} \]

Deviations from \(r_n = 1 \) can be due to:

- **Flow magnitude fluctuations**,
 \[\langle v_n^a v_n^t \rangle \neq \sqrt{\langle v_n^a v_n^t \rangle^2} \]

- **Flow angle fluctuations**,
 \[\langle \cos[n(\Psi_n^a - \Psi_n^t)] \rangle \neq 1 \]

- Cannot measure directly, but can measure upper/lower limits!
Correlation between $[p_T]$ and ν_2

- Shape of the fireball: anisotropic flow, $\varepsilon_n \rightarrow \nu_n$
- Size of the fireball: radial flow, $[p_T], 1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between ν_n and $[p_T]$

For deformed nuclei

Significantly smaller ρ_2 in central Xe—Xe, compared to Pb—Pb
⇒ Deformation β reduces ρ_2

Study with Pearson correlation coefficient:
\[
\rho_n \left(\nu_n^2, [p_T] \right) = \frac{\text{cov} \left(\nu_n^2, [p_T] \right)}{\sqrt{\text{var} \left(\nu_n^2 \right)} \sqrt{\text{var} \left([p_T] \right)}}
\]

\[D_{WS}(r) = \frac{D_0}{1 + e^{(r-R_0(1+\beta Y_{20}))/a}}\]

\[\beta > 0\]
\[\beta < 0\]

\[\begin{align*}
\text{Pb—Pb: } & \beta \approx 0 \\
\text{Xe—Xe: } & \beta \approx 0.16
\end{align*}\]

Correlation between $[p_T]$ and ν_2

- Shape of the fireball: anisotropic flow, $\varepsilon_n \rightarrow \nu_n$
- Size of the fireball: radial flow, $[p_T]$, $1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between ν_n and $[p_T]$

For deformed nuclei

Significantly smaller ρ_2 in central Xe—Xe, compared to Pb—Pb

\Rightarrow Deformation β reduces ρ_2

Probing the initial state

- Low multiplicity: geometry \rightarrow initial momentum correlations
 \Rightarrow Change of slope sign \rightarrow presence of CGC?

Study with Pearson correlation coefficient:

$$
\rho_n \left(\nu_n^2, [p_T] \right) = \frac{\text{cov} \left(\nu_n^2, [p_T] \right)}{\sqrt{\text{var} \left(\nu_n^2 \right) \cdot \text{var} \left([p_T] \right)}}
$$